
Or1ksim User Guide

Jeremy Bennett
Embecosm Limited
Issue 1 for Or1ksim 0.5.0rc2

This file documents the OpenRISC Architectural Simulator, Or1ksim.
Copyright c© 2008, 2009 Embecosm Limited.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Published by Embecosm Limited

i

Table of Contents

Scope of this Document . 1

1 Installation . 2
1.1 Preparation . 2
1.2 Configuring the Build . 2
1.3 Building and Installing . 4
1.4 Known Problems and Issues . 4

2 Usage . 5
2.1 Standalone Simulator . 5
2.2 Profiling Utility . 6
2.3 Memory Profiling Utility . 7
2.4 Simulator Library . 7

3 Configuration . 11
3.1 Configuration File Format . 11

3.1.1 Configuration File Preprocessing . 11
3.1.2 Configuration File Syntax . 11

3.2 Simulator Configuration . 12
3.2.1 Simulator Behavior . 12
3.2.2 Verification API (VAPI) Configuration . 14
3.2.3 Custom Unit Compiler (CUC) Configuration . 14

3.3 Configuring the OpenRISC Architectural Components . 15
3.3.1 CPU Configuration . 15
3.3.2 Memory Configuration . 16
3.3.3 Memory Management Configuration . 18
3.3.4 Cache Configuration . 19
3.3.5 Interrupt Configuration . 20
3.3.6 Power Management Configuration . 20
3.3.7 Branch Prediction Configuration . 21
3.3.8 Debug Interface Configuration . 21

3.4 Configuring Memory Mapped Peripherals . 22
3.4.1 Memory Controller Configuration . 22
3.4.2 UART Configuration . 23
3.4.3 DMA Configuration . 24
3.4.4 Ethernet Configuration . 25
3.4.5 GPIO Configuration . 26
3.4.6 Display Interface Configuration . 27
3.4.7 Frame Buffer Configuration . 27
3.4.8 Keyboard Configuration (PS2) . 28
3.4.9 Disc Interface Configuration . 29

3.4.9.1 ATA/ATAPI Device Configuration . 30
3.4.10 Generic Peripheral Configuration . 30

4 Interactive Command Line . 32

ii

5 Verification API (VAPI) . 35

6 A Guide to Or1ksim Internals . 37
6.1 Coding Conventions for Or1ksim . 37
6.2 Global Data Structures . 38
6.3 Concepts . 39
6.4 Internal Debugging . 39
6.5 Regression Testing . 39

7 GNU Free Documentation License . 41

Index . 48

Scope of this Document 1

Scope of this Document

This document is the user guide for Or1ksim, the OpenRISC 1000 Architectural Simulator.

Chapter 1: Installation 2

1 Installation

Installation follows standard GNU protocols.

1.1 Preparation

Unpack the software and create a separate directory in which to build it:
tar jxf or1ksim-0.5.0rc2.tar.bz2

mkdir builddir_or1ksim

cd builddir_or1ksim

1.2 Configuring the Build

Configure the software using the configure script in the main directory.
The most significant argument is --target, which should specify the OpenRISC 1000 32-bit
architecture. If this argument is omitted, it will default to OpenRISC 1000 32-bit with a warning

../or1ksim-0.5.0rc2/configure --target=or32-uclinux ...

There are several other options available, many of which are standard to GNU configure scripts.
Use configure --help to see all the options. The most useful is --prefix to specify a directory
for installation of the tools.
For testing (using make check), the --target parameter may be specified, to allow the target
tool chain to be selected. If not specified, it will default to or32-elf, which is the same prefix
used with the standard OpenRISC toolchain installation script.
A number of Or1ksim specific features in the simulator do require enabling at configuration.
These include

--enable-profiling
--disable-profiling

If enabled, Or1ksim is compiled for profiling with gprof. This is disabled by default.
Only really of value for developers of Or1ksim.

--enable-execution=simple
--enable-execution=complex
--enable-execution=dynamic

Or1ksim has developed to improve functionality and performance. This feature
allows three versions of Or1ksim to be built

--enable-execution=simple
Build the original simple interpreting simulator

--enable-execution=complex
Build a more complex interpreting simulator. Experiments suggest this
is 50% faster than the simple simulator. This is the default.

--enable-execution=dynamic
Build a dynamically compiling simulator. This is the way many modern
ISS are built. This represents a work in progress. Currently Or1ksim
will compile, but segfaults if configured with this option.

The default is --enable-execution=complex.

--enable-ethphy
--disable-ethphy

If enabled, this option allows the Ethernet to be simulated by connecting via a
socket (the alternative reads and writes, from and to files). This must then be

Chapter 1: Installation 3

configured using the relevant fields in the ethernet section of the configuration file.
See Section 3.4.4 [Ethernet Configuration], page 25.

The default is for this to be disabled.

--enable-unsigned-xori
--disable-unsigned-xori

Historically, l.xori, has sign extended its operand. This is inconsistent with the
other logical opcodes (l.andi, l.ori), but in the absence of l.not, it allows a
register to be inverted in a single instruction using:

l.xori rD,rA,-1

This flag causes Or1ksim to treat the immediate operand as unsigned (i.e to zero-
extend rather than sign-extend).

The default is to sign-extend, so that existing code will continue to work.

Caution: The GNU compiler tool chain makes heavy use of this instruc-
tion. Using unsigned behavior will require the compiler to be modified
accordingly.

This option is provided for experimentation. A future version of Open-
RISC may adopt this more consistent behavior and also provide a l.not
opcode.

--enable-range-stats
--disable-range-stats

If enabled, this option allows statistics to be collected to analyse register access over
time. The default is for this to be disabled.

--enable-debug
--disable-debug

This is a feature of the Argtable2 package used to process arguments. If enabled,
some debugging features are turned on in Argtable2. It is provided for completeness,
but there is no reason why this feature should ever be needed by any Or1ksim user.

--enable-all-tests
--disable-all-tests

Some of the tests (at the time of writing just one) will not compile without error.
If enabled with this flag, all test programs will be compiled with make check.

This flag is intended for those working on the test package, who wish to get the
missing test(s) working.

A number of configuration flags have been removed since version 0.3.0, because they led to
invalid behavior of Or1ksim. Those removed are:

--enable-arith-flag
--disable-arith-flag

If enabled, this option caused certain instructions to set the flag (F bit) in the
supervision register if the result were zero. The instructions affected by this were
l.add, l.addc, l.addi, l.and and l.andi.

If set, this caused incorrect behavior. Whether or not flags are set is part of the
OpenRISC 1000 architectural specification. The only flags which should set this
are the “set flag” instructions: l.sfeq, l.sfeqi, l.sfges, l.sfgesi, l.sfgeu,
l.sfgeui, l.sfgts, l.sfgtsi, l.sfgtu, l.sfgtui, l.sfles, l.sflesi, l.sfleu,
l.sfleui, l.sflts, l.sfltsi, l.sfltu, l.sfltui, l.sfne and l.sfnei.

Chapter 1: Installation 4

--enable-ov-flag
--disable-ov-flag

This flag caused certain instructions to set the overflow flag. If not, those instruc-
tions would not set the overflow flat. The instructions affected by this were l.add,
l.addc, l.addi, l.and, l.andi, l.div, l.divu, l.mul, l.muli, l.or, l.ori,
l.sll, l.slli, l.srl, l.srli, l.sra, l.srai, l.sub, l.xor and l.xori.
This guaranteed incorrect behavior. The OpenRISC 1000 architecture specification
defines which flags are set by which instructions.
Within the above list, the arithmetic instructions (l.add, l.addc, l.addi, l.div,
l.divu, l.mul, l.muli and l.sub), together with l.addic which is missed out,
set the overflow flag. All the others (l.and, l.andi, l.or, l.ori, l.sll, l.slli,
l.srl, l.srli, l.sra, l.srai, l.xor and l.xori) do not.

1.3 Building and Installing

Build the tool with:
make all

If you have the OpenRISC tool chain and DejaGNU installed, you can verify the tool as follows
(otherwise omit this step):

make check

Install the tool with:
make install

This will install the three variations of the Or1ksim tool, or32-uclinux-sim, or32-uclinux-
psim and or32-uclinux-mpsim, the Or1ksim library, ‘libsim’, the header file, ‘or1ksim.h’ and
this documentation in info format.
The documentation may be created and installed in alternative formats (PDF, Postscript, DVI,
HTML) with for example:

make pdf

make install-pdf

1.4 Known Problems and Issues

Full details of outstanding issues may be found in the ‘NEWS’ file in the main directory of the
distribution. The OpenRISC tracker may be used to see the current state of these issues and to
raise new problems and feature requests. It may be found at bugtracker.
The following issues are long standing and unlikely to be fixed in Or1ksim in the near future.
• The Supervision Register Little Endian Enable (LEE) bit is ignored. Or1ksim can be built

for either little endian or big endian use, but that behavior cannot be changed dynamically.
• Or1ksim is not reentrant, so a program cannot instantiate multiple instances using the

library. This is clearly a problem when considering multi-core applications. However it
stems from the original design, and can only be fixed by a complete rewrite. The entire
source code uses static global constants liberally!

http://opencores.org/project

Chapter 2: Usage 5

2 Usage

2.1 Standalone Simulator

The general form the standalone command is:
or32-uclinux-sim [-vhiqVt] [-f file] [--nosrv] [--srv=[n]]

[-m <n>][-d str]
[--enable-profile] [--enable-mprofile] [file]

Many of the options have both a short and a long form. For example -h or --help.

-v
--version

Print out the version and copyright notice for Or1ksim and exit.

-h
--help Print out help about the command line options and what they mean.

-i
--interactive

After starting, drop into the Or1ksim interactive command shell.

-q
--quiet Do not generate any information messages, only error messages.

-V
--verbose

Generate extra output messages (equivalent of specifying the “verbose” option in the
simulator configuration section (see see Section 3.2.1 [Simulator Behavior], page 12).

-t
--trace Dump previous instruction, next instruction, GPRs and flag after each instruction.

-f file

--file=file
Read configuration commands from the specified file, looking first in the current
directory, and otherwise in the ‘$HOME/.or1k’ directory. If this argument is not
specified, the file ‘sim.cfg’ in those two locations is used. Failure to find the file
is a fatal error. See Chapter 3 [Configuration], page 11, for detailed information on
configuring Or1ksim.

--nosrv Do not start up the Remote Serial Protocol debug server. This overrides any setting
specified in the configuration file. This option may not be specified with --srv. If
it is, a rude message is printed and the --nosrv option is ignored.

--srv

--srv=n Start up the Remote Serial Protocol debug server. This overrides any setting spec-
ified in the configuration file. If the parameter, n, is specified, use that as the
TCP/IP port for the server, otherwise a random value from the private port range
(41920-65535) will be used. This option may not be specified with --nosrv. If it is,
a rude message is printed and the --nosrv option is ignored.

-m size

--memory=size
Configure a memory block of size bytes, starting at address zero. The size may be
followed by ‘k’, ‘K’, ‘m’, ‘M’, ‘g’, ‘G’, to indicate kilobytes (210 bytes), megabytes (220

bytes) and gigabytes (230 bytes).

Chapter 2: Usage 6

This is mainly intended for use when Or1ksim is used without a configuration file,
to allow just the processor and memory to be set up. This is the equivalent of
specifying a configuration memory section with baseaddr = 0 and size = size and
all other parameters taking their default value.
If a configuration file is also used, it should be sure not to specify an overlapping
memory block.

-d config_string

--debug-config=config_string
Enable selected debug messages in Or1ksim. This parameter is for use by developers
only, and is not covered further here. See the source code for more details.

--report-memory-errors
By default all exceptions are now handled silently. If this option is specified, bus
exceptions will be reported with a message to standard error indicating the address
at which the exception occurred.
This was the default behaviour up to Or1ksim 0.4.0. This flag is provided for those
who wish to keep that behavior.

--strict-npc
In real hardware, setting the next program counter (NPC, SPR 16), flushes the
processor pipeline. The consequence of this is that until the pipeline refills, reading
the NPC will return zero. This is typically the case when debugging, since the
processor is stalled.
Historically, Or1ksim has always returned the value of the NPC, irrespective of when
it is changed. If the --strict-npc option is used, then Or1ksim will mirror real
hardware more accurately. If the NPC is changed while the processor is stalled,
subsequent reads of its value will return 0 until the processor is unstalled.
This is not currently the default behavior, since tools such as GDB have been im-
plemented assuming the historic Or1ksim behavior. However at some time in the
future it will become the default.

--enable-profile
Enable instruction profiling.

--enable-mprofile
Enable memory profiling.

2.2 Profiling Utility

This utility analyses instruction profile data generated by Or1ksim. It may be invoked as a
standalone command, or from the Or1ksim CLI. The general form the standalone command is:

or32-uclinux-profile [-vhcq] [-g=file]

Many of the options have both a short and a long form. For example -h or --help.

-v
--version

Print out the version and copyright notice for the Or1ksim profiling utility and exit.

-h
--help Print out help about the command line options and what they mean.

-c
--cumulative

Show cumulative sum of cycles in functions

Chapter 2: Usage 7

-q
--quiet Suppress messages

-g=file
--generate=file

The data file to analyse. If omitted, the default file, ‘sim.profile’ is used.

2.3 Memory Profiling Utility

This utility analyses memory profile data generated by Or1ksim. It may be invoked as a stand-
alone command, or from the Or1ksim CLI. The general form the standalone command is:

or32-uclinux-mprofile [-vh] [-m=m] [-g=n] [-f=file] from to

Many of the options have both a short and a long form. For example -h or --help.

-v
--version

Print out the version and copyright notice for the Or1ksim memory profiling utility
and exit.

-h
--help Print out help about the command line options and what they mean.

-m=m
--mode=m Specify the mode out output. Permitted options are

detailed
d Detailed output. This is the default if no mode is specified.

pretty
p Pretty printed output.

access
a Memory accesses only.

width
w Access width only.

-g=n
--group=n

Group 2n bits of successive addresses together.

-f=file
--filename=file

The data file to analyse. If not specified, the default, ‘sim.profile’ is used.

from

to from and to are respectively the start and end address of the region of memory to
be analysed.

2.4 Simulator Library

Or1ksim may be used as a static of dynamic library, ‘libsim.a’ or ‘libsim.so’. When compiling
with the static library, the flag, -lsim should be added to the link command.
The header file ‘or1ksim.h’ contains appropriate declarations of the functions exported by the
Or1ksim library. These are:

[‘or1ksim.h’]int or1ksim_init (int argc , char *argv , void *class_ptr ,
int (*upr)(void *class ptr, unsigned long int addr, unsigned char mask[], unsigned char
rdata[], int data len), int (*upw)(void *class ptr, unsigned long int addr, unsigned char
mask[], unsigned char wdata[], int data len))

Chapter 2: Usage 8

The initialization function is supplied with a vector of arguments, which are interpreted as
arguments to the standalone version (see see Section 2.1 [Standalone Simulator], page 5),
a pointer to the calling class, class ptr (since the library may be used from C++) and two
up-call functions, one for reads, upr, and one for writes, upw .

upw is called for any write to an address external to the model (determined by a generic
section in the configuration file). upr is called for any reads to an external address. The
class ptr is passed back with these upcalls, allowing the function to associate the call with
the class which originally initialized the library. Both upw and upr should return zero on
success and non-zero otherwise. At the present time the meaning of non-zero values is not
defined but this may change in the future.

mask indicates which bytes in the data are to be written or read. Bytes to be read/written
should have 0xff set in mask. Otherwise the byte should be zero. The adddress, addr, is the
full address, since the upcall function must handle all generic devices, using the full address
for decoding.

Endianness is not a concern, since Or1ksim is transferring byte vectors, not multi-byte values.

The result indicates whether the initialization was successful. The integer values are available
as an enum or1ksim, with possible values OR1KSIM_RC_OK and OR1KSIM_RC_BADINIT.

Caution: This is a change from versions 0.3.0 and 0.4.0. It further simplifies
the interface, and makes Or1ksim more consistent with payload representation
in SystemC TLM 2.0.

Note: The current implementation of Or1ksim always transfers single words (4
bytes), using masks if smaller values are required. In this it mimcs the behavior
of the WishBone bus.

[‘or1ksim.h’]int or1ksim_run (double duration)
Run the simulator for the simulated duration specified (in seconds). A duration of -1 indicates
‘run forever’

The result indicates how the run terminated. The integer values are available as an enum
or1ksim, with possible values OR1KSIM_RC_OK (ran for the full duration), OR1KSIM_RC_BRKPT
(terminated early due to hitting a breakpoint) and OR1KSIM_RC_HALTED (terminated early
due to hitting l.nop 1).

[‘or1ksim.h’]void or1ksim_reset_duration (double duration)
Change the duration of a run specified in an earlier call to or1ksim_run. Typically this is
called from an upcall, which realizes it needs to change the duration of the run specified in
the call to or1ksim_run that has been interrupted by the upcall.

The time specified is the amount of time that the run must continue for (i.e the duration
from now, not the duration from the original call to or1ksim_run).

[‘or1ksim.h’]void or1ksim_set_time_point ()
Set a timing point. For use with or1ksim_get_time_period.

[‘or1ksim.h’]double or1ksim_get_time_period ()
Return the simulated time (in seconds) that has elapsed since the last call to or1ksim_set_
time_point.

[‘or1ksim.h’]int or1ksim_is_le ()
Return 1 (logical true) if the Or1ksim simulation is little-endian, 0 otherwise.

[‘or1ksim.h’]unsigned long int or1ksim clock rate ()
Return the Or1ksim clock rate (in Hz). This is the value specified in the configuration file.

Chapter 2: Usage 9

[‘or1ksim.h’]void or1ksim_interrupt (int i)
Generate an edge-triggered interrupt on interrupt line i. The interrupt is then immediately
cleared automatically. A warning will be generated and the interrupt request ignored if level
sensitive interrupts have been configured with the programmable interrupt controller (see
Section 3.3.5 [Interrupt Configuration], page 20).

[‘or1ksim.h’]void or1ksim_interrupt_set (int i)
Assert a level-triggered interrupt on interrupt line i. The interrupt must be cleared separately
by an explicit call to or1ksim_interrupt_clear. A warning will be generated, and the inter-
rupt request ignored if edge sensitive interrupts have been configured with the programmable
interrupt controller (see Section 3.3.5 [Interrupt Configuration], page 20).

[‘or1ksim.h’]void or1ksim_interrupt_clear (int i)
Clear a level-triggered interrupt on interrupt line i, which was previously asserted by a call
to or1ksim_interrupt_set. A warning will be generated, and the interrupt request ignored
if edge sensitive interrupts have been configured with the programmable interrupt controller
(see Section 3.3.5 [Interrupt Configuration], page 20).

[‘or1ksim.h’]double or1ksim_jtag_reset ()
Drive a reset sequence through the JTAG interface. Return the (model) time taken for this
action. Remember that the JTAG has its own clock, which can be an order of magnitude
slower than the main clock, so even a reset (5 JTAG cycles) could take 50 processor clock
cycles to complete.

[‘or1ksim.h’]double or1ksim_jtag_shift_ir (unsigned
char *jreg , int num bits)

Shift the supplied register through the JTAG instruction register. Return the (model) time
taken for this action. The register is supplied as a byte vector, with the least significant bits
in the least significant byte. If the total number of bits is not an exact number of bytes, then
the odd bits are found in the least significant end of the highest numbered byte.

For example a 12-bit register would have bits 0-7 in byte 0 and bits 11-8 in the least significant
4 bits of byte 1.

[‘or1ksim.h’]double or1ksim_jtag_shift_dr (unsigned
char *jreg , int num bits)

Shift the supplied register through the JTAG data register. Return the (model) time taken
for this action. The register is supplied as a byte vector, with the least significant bits in the
least significant byte. If the total number of bits is not an exact number of bytes, then the
odd bits are found in the least significant end of the highest numbered byte.

For example a 12-bit register would have bits 0-7 in byte 0 and bits 11-8 in the least significant
4 bits of byte 1.

[‘or1ksim.h’]int or1ksim_read_mem (unsigned
long int addr, unsigned char *buf , int len)

Read len bytes from addr, placing the result in buf . Return len on success and 0 on failure.

Note: This function was added in Or1ksim 0.5.0.

[‘or1ksim.h’]int or1ksim_write_mem (unsigned
long int addr, const unsigned char *buf , int len)

Write len bytes to addr, taking the data from buf . Return len on success and 0 on failure.

Note: This function was added in Or1ksim 0.5.0.

Chapter 2: Usage 10

[‘or1ksim.h’]int or1ksim_read_spr (int sprnum , unsigned
long int *sprval ptr)
Read the SPR specified by sprnum, placing the result in sprval ptr. Return non-zero on
success and 0 on failure.

Note: This function was added in Or1ksim 0.5.0.

[‘or1ksim.h’]int or1ksim_write_spr (int sprnum , unsigned
long int sprva)
Write sprval to the SPR specified by sprnum. Return non-zero on success and 0 on failure.

Note: This function was added in Or1ksim 0.5.0.

[‘or1ksim.h’]int or1ksim_read_reg (int regnum , unsigned
long int *regval ptr)
Read the general purpose register specified by regnum, placing the result in regval ptr. Re-
turn non-zero on success and 0 on failure.

Note: This function was added in Or1ksim 0.5.0.

[‘or1ksim.h’]int or1ksim_write_reg (int regnum , unsigned
long int regva)
Write regval to the general purpose register specified by regnum. Return non-zero on success
and 0 on failure.

Note: This function was added in Or1ksim 0.5.0.

[‘or1ksim.h’]void or1ksim_set_stall_state (int
state)
Set the processor’s state according to state (1 = stalled, 0 = not stalled).

Note: This function was added in Or1ksim 0.5.0.

The libraries will be installed in the ‘lib’ sub-directory of the main installation directory (as
specified with the ‘--prefix’ option to the configure script).
For example if the main installation directory is ‘/opt/or1ksim’, the library will be found in
the ‘/opt/or1ksim/lib’ directory. It is available as both a static library (‘libsim.a’) and a
shared object (‘libsim.so’).
To link against the library add the ‘-lsim’ flag when linking and do one of the following:
• Add the library directory to the LD_LIBRARY_PATH environment variable during execution.

For example:
export LD_LIBRARY_PATH=/opt/or1ksim/lib:$LD_LIBRARY_PATH

• Add the library directory to the LD_RUN_PATH environment variable during linking. For
example:

export LD_RUN_PATH=/opt/or1ksim/lib:$LD_RUN_PATH

• Use the linker ‘--rpath’ option and specify the library directory when linking your program.
For example

gcc ... -Wl,--rpath -Wl,/opt/or1ksim/lib ...

• Add the library directory to ‘/etc/ld.so.conf’

Chapter 3: Configuration 11

3 Configuration

Or1ksim is configured through a configuration file. This is specified through the -f parameter
to the Or1ksim command, or passed as a string when initializing the Or1ksim library. If no file
is specified, the default ‘sim.cfg’ is used. The file is looked for first in the current directory,
then in the ‘$HOME/.or1ksim’ directory of the user.

3.1 Configuration File Format

The configuration file is a plain text file. A reference example, ‘sim.cfg’, is included in the top
level directory of the distribution.

3.1.1 Configuration File Preprocessing

The configuration file may include C style comments (i.e. delimited by /* and */).

3.1.2 Configuration File Syntax

The configuration file is divided into a series of sections, with the general form:
section section_name

<contents>...

end

Sections may also have sub-sections within them (currently only the ATA/ATAPI disc interface
uses this).
Within a section, or sub-section are a series of parameter assignments, one per line, withe the
general form

parameter = value

Depending on the parameter, the value may be a named value (an enumeration), an integer
(specified in any format acceptable in C) or a string in doubple quotes. For flag parameters, the
value 1 is used to mean “true” or “on” and the value “0” to mean “false” or “off”. An example
from a memory section shows each of these

section memory
type = random
pattern = 0x00
name = "FLASH"
...

end

Many parameters are optional and take reasonable default values if not specified. However there
are some parameters (for example the ce parameter in section memory) must be specified.
Subsections are introduced by a keyword, with a parameter value (no = sign), and end with the
same keyword prefixed by end. Thus the ATA/ATAPI inteface (section ata) has a device
subsection, thus:

section ata
...
device 0
type = 1
file = "filename"
...

enddevice
...

Chapter 3: Configuration 12

end

Some sections (for example section sim) should appear only once. Others (for example
section memory may appear multiple times.

Sections may be omitted, unless they contain parameters which are non-optional. If the section
describes a part of the simulator which is optional (for example whether it has a UART), then
that functionality will not be provided. If the section describes a part of the simulator which
is not optional (for example the CPU), then all the parameters of that section will take their
default values.

All optional parts of the functionality are always described by sections including a enabled
parameter, which can be set to 0 to ensure that functionality is explicitly omitted.

Even if a section is disabled, all its parameters will be read and stored. This is helpful if the
section is subsequently enabled from the Or1ksim command line (see Chapter 4 [Interactive
Command Line], page 32).

Tip: It generally clearer to have sections describing all components, with omitted
functionality explicitly indicated by setting the enabled parameter to 0

The following sections describe the various configuration sections and the parameters which may
be set in each.

3.2 Simulator Configuration

3.2.1 Simulator Behavior

Simulator behavior is described in section sim. This section should appear only once. The
following parameters may be specified.

verbose = 0|1
If 1 (true), print extra messages. Default 0.

debug = 0-9
0 means no debug messages. 1-9 means produce debug messages. The higher the
value the greater the number of messages. Default 0. Negative values will be treated
as 0 (with a warning). Values that are too large will be treated as 9 (with a warning).

profile = 0|1
If 1 (true) generate a profiling file using the file specified in the prof_file parameter
or otherwise ‘sim.profile’. Default 0.

prof_file = ‘‘filename’’
Specifies the file to be used with the profile parameter. Default ‘sim.profile’.
For backwards compatibility, the alternative name prof_fn is supported for this
parameter, but deprecated. Default ‘sim.profile’.

mprofile = 0|1
If 1 (true) generate a memory profiling file using the file specified in the mprof_file
parameter or otherwise ‘sim.mprofile’. Default 0.

mprof_file = ‘‘filename’’
Specifies the file to be used with the mprofile parameter. Default ‘sim.mprofile’.
For backwards compatibility, the alternative name mprof_fn is supported for this
parameter, but deprecated. Default ‘sim.mprofile’.

history = 0|1
If 1 (true) track execution flow. Default 0.

Note: Setting this parameter seriously degrades performance.

Chapter 3: Configuration 13

Note: If this execution flow tracking is enabled, then dependstats must
be enabled in the CPU configuration section (see Section 3.3.1 [CPU
Configuration], page 15).

exe_log = 0|1
If 1 (true), generate an execution log. Log is written to the file specified in parameter
exe_log_file. Default 0.

Note: Setting this parameter seriously degrades performance.

exe_log_type = default|hardware|simple|software
Type of execution log to produce.

default Produce default output for the execution log. In the current implemen-
tation this is the equivalent of hardware.

hardware After each instruction execution, log the number of instructions exe-
cuted so far, the next instruction to execute (in hex), the general purpose
registers (GPRs), status register, exception program counter, exception,
effective address register and exception status register.

simple After each instruction execution, log the number of instructions exe-
cuted so far and the next instruction to execute, symbolically disassem-
bled.

software After each instruction execution, log the number of instructions exe-
cuted so far and the next instruction to execute, symbolically disassem-
bled. Also show the value of each operand to the instruction.

Default value hardware. Any unrecognized keyword (case insensitive) will be treated
as the default with a warning.

Note: Execution logs can be very big.

exe_log_start = value

Address of the first instruction to start logging. Default 0.

exe_log_end = value

Address of the last instruction to log. Default no limit (i.e once started logging will
continue until the simulator exits).

exe_log_marker = value

Specifies the number of instructions between printing horizontal markers. Default
is to produce no markers.

exe_log_file = filename

Filename for the execution log filename if exe_log is enabled. Default
‘executed.log’. For backwards compatibility, the alternative name exe_log_fn is
supported for this parameter, but deprecated.

exe_bin_insn_log = 0|1
Enable logging of executed instructions to a file in binary format. This is helpful
for off-line dynamic execution analysis.

Note: Execution logs can be very big. For example, while booting the
Linux kernel, version 2.6.34, a log file 1.2GB in size was generated.

exe_bin_insn_log_file = filename

Filename for the binary execution log filename if exe_bin_insn_log is enabled.
Default ‘exe-insn.bin’.

clkcycle = value[ps|ns|us|ms]
Specify the time taken by one clock cycle. If no units are specified, ps is assumed.
Default 4000ps (250MHz).

Chapter 3: Configuration 14

3.2.2 Verification API (VAPI) Configuration

The Verification API (VAPI) provides a TCP/IP interface to allow components of the simulation
to be controlled externally. See Chapter 5 [Verification API], page 35, for more details.
Verification API configuration is described in section vapi. This section may appear at most
once. The following parameters may be specified.

enabled = 0|1
If 1 (true), verification API is enabled and its server started. If 0 (the default), it is
disabled.

server_port = value

When VAPI is enabled, communication will be via TCP/IP on the port specified
by value. The value must lie in the range 1 to 65535. The default value is 50000.

Tip: There is no registered port for Or1ksim VAPI. Good practice sug-
gests users should adopt port values in the Dynamic or Private port
range, i.e. 49152-65535.

log_enabled = 0|1
If 1 (true), all VAPI requests and sent commands will be logged. If 0 (the default),
logging is diabled. Logs are written to the file specified by the vapi_log_file field
(see below).

Caution: This can generate a substantial amount of file I/O and seri-
ously degrade simulator performance.

hide_device_id = 0|1
If 1 (true) don’t log the device ID. If 0 (the default), log the device ID. This feature
(when set to 1) is provided for backwards compatibility with an old version of VAPI.

vapi_log_file = "filename"
Use ‘filename’ as the file for logged data is logging is enabled (see log_enabled
above). The default is "vapi.log". For backwards compatibility, the alternative
name vapi_log_fn is supported for this parameter, but deprecated.

3.2.3 Custom Unit Compiler (CUC) Configuration

The Custom Unit Compiler (CUC) was a project by Marko Mlinar to generate Verilog from
ANSI C functions. The project seems to not have progressed beyond the initial prototype
phase. The configuration parameters are described here for the record.
CUC configuration is described in section cuc. This section may appear at most once. The
following parameters may be specified.

memory_order = none|weak|strong|exact
This parameter specifies the memory ordering required:

memory_order=none
Different memory ordering, even if there are dependencies. Bursts can
be made, width can change.

memory_order=weak
Different memory ordering, even if there are dependencies. If depen-
dencies cannot occur, then bursts can be made, width can change.

memory_order=strong
Same memory ordering. Bursts can be made, width can change.

memory_order=exact
Exactly the same memory ordering and widths.

Chapter 3: Configuration 15

The default value is memory_order=exact. Invalid memory orderings are ignored
with a warning.

calling_convention = 0|1
If 1 (true), programs follow OpenRISC calling conventions. If 0 (the default), they
may use other convenitions.

enable_bursts = 0 | 1
If 1 (true), bursts are detected. If 0 (the default), bursts are not detected.

no_multicycle = 0 | 1
If 1 (true), no multicycle logic paths will be generated. If 0 (the default), multicycle
logic paths will be generated.

timings_file = "filename"
filename specifies a file containing timing information. The default value is
"virtex.tim". For backwards compatibility, the alternative name timings_fn is
supported for this parameter, but deprecated.

3.3 Configuring the OpenRISC Architectural Components

3.3.1 CPU Configuration

CPU configuration is described in section cpu. This section should appear only once. At
present Or1ksim does not model multi-CPU systems. The following parameters may be specified.

ver = value

cfg = value

rev = value

The values are used to form the corresponding fields in the VR Special Purpose
Register (SPR 0). Default values 0. A warning is given and the value truncated if
it is too large (8 bits for ver and cfg, 6 bits for rev).

upr = value

Used as the value of the Unit Present Register (UPR) Special Purpose Register
(SPR 1) to value. Default value is 0x0000075f, i.e.
• UPR present (0x00000001)
• Data cache present (0x00000002)
• Instruction cache present (0x00000004)
• Data MMY present (0x00000008)
• Instruction MMU present (0x00000010)
• Debug unit present (0x00000040)
• Power management unit present (0x00000100)
• Programmable interrupt controller present (0x00000200)
• Tick timer present (0x00000400)

However, with the exection of the UPR present (0x00000001) and tick timer present,
the various fields will be modified with the values specified in their corresponding
configuration sections.

cfgr = value

Sets the CPU configuration register (Special Purpose Register 2) to value. Default
value is 0x00000020, i.e. support for the ORBIS32 instruction set. Attempts to set
any other value are accepted, but issue a warning that there is no support for the
instruction set.

Chapter 3: Configuration 16

sr = value

Sets the supervision register Special Purpose Register (SPR 0x11) to value. Default
value is 0x00008001, i.e. start in supervision mode (0x00000001) and set the “Fixed
One” bit (0x00008000).

Note: This is particularly useful when an image is held in Flash at
high memory (0xf0000000). The EPH bit can be set, so that interrupt
vectors are basedf at 0xf0000000, rather than 0x0.

superscalar = 0|1
If 1, the processor operates in superscalar mode. Default value is 0.
In the current simulator, the only functional effect of superscalar mode is to affect
the calculation of the number of cycles taken to execute an instruction.

Caution: The code for this does not appear to be complete or well
tested, so users are advised not to use this option.

hazards = 0|1
If 1, data hazards are tracked in a superscalar CPU. Default value is 0.
In the current simulator, the only functional effect is to cause logging of hazard
waiting information if the CPU is superscalar. However nowhere in the simulator is
this data actually computed, so the net result is probably to have no effect.
if harzards are tracked, current hazards can be displayed using the simulator’s r
command.

Caution: The code for this does not appear to be complete or well
tested, so users are advised not to use this option.

dependstats = 0|1
If 1, inter-instruction dependencies are calculated. Default value 0.
If these values are calculated, the depencies can be displayed using the simulator’s
stat command.

Note: This field must be enabled, if execution execution flow tracking
(field history) has been requested in the simulator configuration section
(see Section 3.2.1 [Simulator Behavior], page 12).

sbuf_len = value

The length of the store buffer is set to value, which must be no greater than 256.
Larger values will be truncated to 256 with a warning. Negative values will be
treated as 0 with a warning. Use 0 to disable the store buffer.
When the store buffer is active, stores are accumulated and committed when I/O is
idle.

hardfloat = 0|1
If 1, hardfloat instructions are enabled. Default value 0.

3.3.2 Memory Configuration

Memory configuration is described in section memory. This section may appear multiple times,
specifying multiple blocks of memory.

Caution: The user may choose whether or not to enable a memory controller. If a
memory controller is enabled, then appropriate initalization code must be provided.
The section describing memory controller configuration describes the steps necessary
for using smaller or larger memory sections (see Section 3.4.1 [Memory Controller
Configuration], page 22).
The uClibc startup code initalizes a memory controller, assumed to be mapped at
0x93000000. If a memory controller is not enabled, then the standard C library

Chapter 3: Configuration 17

code will generate memory access errors. The solution is to declare an additional
writable memory block, mimicing the memory controller’s register bank as follows.

section memory
pattern = 0x00
type = unknown
name = "MC shadow"
baseaddr = 0x93000000
size = 0x00000080
delayr = 2
delayw = 4

end

The following parameters may be specified.

type=random|pattern|unknown|zero
Specifies the values to which memory should be initialized. The default value is
unknown.

random Set the memory values to be a random value. A seed for the random
generator may be set using the random_seed field in this section (see
below), thus ensuring the same “random” values are used each time.

pattern Set the memory values to be a pattern value, which is set using the
pattern field in this section (see below).

unknown The memory values are not initialized (i.e. left “unknown”). This option
will yield faster initialization of the simulator. This is the default.

zero Set the memory values to be 0. This is the equivalent of type=pattern
and a pattern value of 0, and implemented as such.

Note: As a consequence, if the pattern field is subsequently
specified in this section, the value in that field will be used
instead of zero to initialize the memory.

random_seed = value

Set the seed for the random number generator to value. This only has any effect for
memory type random.
The default value is -1, which means the seed will be set from a call to the time
function, thus ensuring different random values are used on each run. The simulator
prints out the seed used in this case, allowing repeat runs to regenerate the same
random values used in any particular run.

pattern = value

Set the pattern to be used when initializing memory to value. The default value is
0. This only has any effect for memory type pattern. The least significant 8 bits
of this value is used to initialize each byte. More than 8 bits can be specified, but
will ignored with a warning.

Tip: The default value, is equivalent to setting the memory type to
be zero. If that is what is intended, then using type=zero explicitly is
better than using type=pattern and not specifying a value for pattern.

baseaddr = value

Set the base address of the memory to value. It should be aligned to a multiple of
the memory size rounded up to the nearest 2n. The default value is 0.

size = value

Set the size of the memory block to be value bytes. This should be a multiple of 4
(i.e. word aligned). The default value is 1024.

Chapter 3: Configuration 18

Note: When allocating memory, the simulator will allocate the nearest
2n bytes greater than or equal to value, and will not notice memory
misses in any part of the memory between value and the amount allo-
cated.

As a consequence users are strongly recommended to specify memory
sizes that are an exact power of 2. If some other amount of memory is
required, it should be specified as separate, contiguous blocks, each of
which is a power of 2 in size.

name = "text"
Name the block. Typically these describe the type of memory being modeled (thus
"SRAM" or "Flash". The default is "anonymous memory block".

Note: It is not clear that this information is currently ever used in
normal operation of the simulator. Even the info command of the
simulator ignores it.

ce = value

Set the chip enable index of the memory instance. Each memory instance should
have a unique chip enable index, which should be greater than or equal to zero.
This is used by the memory controller when identifying different memory instances.

There is no requirement to set ce if a memory controller is not enabled. The default
value is -1 (invalid).

mc = value

Specifies the memory controller this memory is connected to. It should correspond to
the index field specified in a section mc for a memory controller (see Section 3.4.1
[Memory Controller Configuration], page 22).

There is no requirement to set mc if a memory controller is not enabled. Default
value is 0, which is also the default value of a memory controller index field. This
is suitable therefore for designs with just one memory controller.

delayr = value

The number of cycles required for a read access. Set to -1 if the memory does not
support reading. Default value 1. The simulator will add this number of cycles to
the total instruction cycle count when reading from main memory.

delayw = value

The number of cycles required for a write access. Set to -1 if the memory does not
support writing. Default value 1. The simulator will add this number of cycles to
the total instruction cycle count when writing to main memory.

log = "file"
If specified, ‘file’ names a file for all memory accesses to be logged. If not specified,
the default value, NULL is used, meaning that the memory is not logged.

3.3.3 Memory Management Configuration

Memory Management Unit (MMU) configuration is described in section dmmu (for the data
MMU) and section immu (for the instruction MMU). Each section should appear at most once.
The following parameters may be specified.

enabled = 0|1
If 1 (true), the data or instruction (as appropriate) MMU is enabled. If 0 (the
default), it is disabled.

Chapter 3: Configuration 19

nsets = value

Sets the number of data or instruction (as appropriate) TLB sets to value, which
must be a power of two, not exceeding 128. Values which do not fit these criteria
are ignored with a warning. The default value is 1.

nways = value

Sets the number of data or instruction (as appropriate) TLB ways to value. The
value must be in the range 1 to 4. Values outside this range are ignored with a
warning. The default value is 1.

pagesize = value

The data or instruction (as appropriate) MMU page size is set to value, which must
be a power of 2. Values which are not a power of 2 are ignored with a warning. The
default is 8192 (0x2000).

entrysize = value

The data or instruction (as appropriate) MMU entry size is set to value, which must
be a power of 2. Values which are not a power of 2 are ignored with a warning. The
default value is 1.

Note: Or1ksim does not appear to use the entrysize parameter in
its simulation of the MMUs. Thus setting this value does not seem to
matter.

ustates = value

The number of instruction usage states for the data or instruction (as appropriate)
MMU is set to value, which must be 2, 3 or 4. Values outside this range are ignored
with a warning. The default value is 2.

Note: Or1ksim does not appear to use the ustates parameter in its
simulation of the MMUs. Thus setting this value does not seem to
matter.

hitdelay = value

Set the number of cycles a data or instruction (as appropriate) MMU hit costs.
Default value 1.

missdelay = value

Set the number of cycles a data or instruction (as appropriate) MMU miss costs.
Default value 1.

3.3.4 Cache Configuration

Cache configuration is described in section dc (for the data cache) and seciton ic (for the
instruction cache). Each section should appear at most once. The following parameters may be
specified.

enabled = 0|1
If 1 (true), the data or instruction (as appropriate) cache is enabled. If 0 (the
default), it is disabled.

nsets = value

Sets the number of data or instruction (as appropriate) cache sets to value, which
must be a power of two, not exceeding MAX_DC_SETS (for the data cache) or MAX_IC_
SETS (for the instruction cache). At the time of writing, these constants are both
defined in the code to be 1024). The default value is 1.

nways = value

Sets the number of data or instruction (as appropriate) cache ways to value, which
must be a power of two, not exceeding MAX_DC_WAYS (for the data cache) or MAX_IC_

Chapter 3: Configuration 20

WAYS (for the instruction cache). At the time of writing, these constants are both
defined in the code to be 32). The default value is 1.

blocksize = value

The data or instruction (as appropriate) cache block size is set to value bytes, which
must be either 16 or 32. The default is 16.

ustates = value

The number of instruction usage states for the data or instruction (as appropriate)
cache is set to value, which must be 2, 3 or 4. The default value is 2.

hitdelay = value

Instruction cache only. Set the number of cycles an instruction cache hit costs.
Default value 1.

missdelay = value

Instruction cache only. Set the number of cycles an instruction cache miss costs.
Default value 1.

load_hitdelay = value

Data cache only. Set the number of cycles a data load cache hit costs. Default value
2.

load_missdelay = value

Data cache only. Set the number of cycles a data load cache miss costs. Default
value 2.

store_hitdelay = value

Data cache only. Set the number of cycles a data store cache hit costs. Default
value 0.

store_missdelay = value

Data cache only. Set the number of cycles a data store cache miss costs. Default
value 0.

3.3.5 Interrupt Configuration

Programmable Interrupt Controller (PIC) configuration is described in section pic. This sec-
tion may appear at most once—Or1ksim has no mechanism for handling multiple interrupt
controllers. The following parameters may be specified.

enabled = 0|1
If 1 (true), the programmable interrupt controller is enabled. If 0 (the default), it
is disabled.

edge_trigger = 0|1
If 1 (true, the default), the programmable interrupt controller is edge triggered. If
0 (false), it is level triggered.

3.3.6 Power Management Configuration

Power management implementation is incomplete. At present the effect (which only happens
when the power management unit is enabled) of setting the different bits in the power manage-
ment Special Purpose Register (PMR, SPR 0x4000) is

SDF (bit mask 0x0000000f)
No effect - these bits are ignored

DME (bit mask 0x00000010)
SME (bit mask 0x00000020)

Both these bits cause the processor to stop executing instructions. However all other
functions (debug interaction, CLI, VAPI etc) carry on as normal.

Chapter 3: Configuration 21

DCGE (bit mask 0x00000004)
No effect - this bit is ignored

SUME (bit mask 0x00000008)
Enabling this bit causes a message to be printed, advising that the processor is
suspending and the simulator exits.

On reset all bits are cleared.

Power management configuration is described in section pm. This section may appear at most
once. The following parameter may be specified.

enabled = 0|1
If 1 (true), power management is enabled. If 0 (the default), it is disabled.

3.3.7 Branch Prediction Configuration

From examining the code base, it seems the branch prediction function is not fully implemented.
At present the functionality seems restricted to collection of statistics.

Branch prediction configuration is described in section bpb. This section may appear at most
once. The following parameters may be specified.

enabled = 0|1
If 1 (true), branch prediction is enabled. If 0 (the default), it is disabled.

btic = 0|1
If 1 (true), the branch target instruction cache model is enabled. If 0 (the default),
it is disabled.

sbp_bf_fwd = 0|1
If 1 (true), use forward prediction for the l.bf instruction. If 0 (the default), do
not use forward prediction for this instruction.

sbp_bnf_fwd = 0|1
If 1 (true), use forward prediction for the l.bnf instruction. If 0 (the default), do
not use forward prediction for this instruction.

hitdelay = value

Set the number of cycles a branch prediction hit costs. Default value 0.

missdelay = value

Set the number of cycles a branch prediction miss costs. Default value 0.

3.3.8 Debug Interface Configuration

The debug unit and debug interface configuration is described in section debug. This section
may appear at most once. The following parameters may be specified.

enabled = 0|1
If 1 (true), the debug unit is enabled. If 0 (the default), it is disabled.

Note: This enables the functionality of the debug unit (its registers etc)
within the mode. It does not provide any external interface to the debug
unit. For that, see rsp_enabled below.

rsp_enabled = 0|1
If 1 (true), the GDB Remote Serial Protocol server is started, provding an interface
to an external GNU debugger, using the port specified in the rsp_port field (see
below), or the or1ksim-rsp TCP/IP service. If 0 (the default), the server is not
started, and no external interface is provided.

Chapter 3: Configuration 22

For more detailed information on the interface to the GNU Debugger see Embecosm
Application Note 2, Howto: Porting the GNU Debugger Practical Experience with
the OpenRISC 1000 Architecture, by Jeremy Bennett, published by Embecosm
Limited (www.embecosm.com).

rsp_port = value

value specifies the port to be used for the GDB Remote Serial Protocol interface to
the GNU Debugger (GDB). Default value 51000. If the value 0 is specified, Or1ksim
will instead look for a TCP/IP service named or1ksim-rsp.

Tip: There is no registered port for Or1ksim Remote Serial Protocol
service or1ksim-rsp. Good practice suggests users should adopt port
values in the Dynamic or Private port range, i.e. 49152-65535.

vapi_id = value

value specifies the value of the Verification API (VAPI) base address to be used
with the debug unit. See Chapter 5 [Verification API], page 35, for more details.
If this is specified and value is non-zero, all OpenRISC Remote JTAG protocol
transactions will be logged to the VAPI log file, if enabled. This is the only func-
tionality associated with VAPI for the debug unit. No VAPI commands are sent,
nor requests handled.

3.4 Configuring Memory Mapped Peripherals

All peripheral components are optional. If they are specified, then (unlike other components)
by default they are enabled.

3.4.1 Memory Controller Configuration

The memory controller used in Or1ksim is the component implemented at OpenCores, and found
in the top level SVN directory, ‘mem_ctrl’. It is described in the document Memory Controller
IP Core by Rudolf Usselmann, which can be found in the ‘doc’ subdirectory. It is a memory
mapped component, which resides on the main OpenRISC Wishbone data bus.
The memory controller configuration is described in section mc. This section may appear
multiple times, specifying multiple memory controllers.

Warning: There are known to be problems with the current memory controller,
which currently is not included in the regression test suite. Users are advised not
to use the memory controller in the current release.
Caution: There is no initialization code in the standard newlib library.
The standard uClibc library assumes a memory controller mapped at 0x93000000
and will initialize the memory controller to expect 64MB memory blocks, and any
memory declarations must reflect this.
If smaller memory blocks are declared with a memory controller, then sufficient
memory will not be allocated by Or1ksim, but out of range memory accesses will not
be trapped. For example declaring a memory section from 0-4MB with a memory
controller enabled would mean that accesses between 4MB and 64MB would be
permitted, but having no allocated memory would likely cause a segmentation fault.
If the user is determined to use smaller memories with the memory controller, then
custom initialization code must be provided, to ensure the memory controller traps
out-of-memory accesses.

The following parameters may be specified.

enabled = 0|1
If 1 (true, the default), this memory controller is enabled. If 0, it is disabled.

www.embecosm.com

Chapter 3: Configuration 23

Note: The memory controller can effectively also be disabled by setting
an appropriate power on control register value (see below). However this
should only be used if it is desired to specifically model this behavior of
the memory controller, not as a way of disabling the memory controller
in general.

baseaddr = value

Set the base address of the memory controller’s memory mapped registers to value.
The default is 0, which is probably not a sensible value.
The memory controller has a 7 bit address bus, with a total of 19 32-bit registers,
at addresses 0x00 through 0x4c (address 0x0c and addresses 0x50 through 0x7c are
not used).

poc = value

Specifies the value of the power on control register, The least signficant two bits
specify the bus width (use 0 for an 8-bit bus, 1 for a 16-bit bus and 2 for a 32-bit
bus) and the next two bits the type of memory connected (use 0 for a disabled
interface, 1 for SSRAM, 2 for asyncrhonous devices and 3 for synchronous devices).
If other bits are specified, they are ignored with a warning.

Caution: The default value, 0, corresponds to a disabled 8-bit bus, and
is likely not the most suitable value

index = value

Specify the index of this memory controller amongst all the memory controllers.
This value should be unique for each memory controller, and is used to associate
specific memories with the controller, through the mc field in the section memory
configuration (see Section 3.3.2 [Memory Configuration], page 16).
The default value, 0, is suitable when there is only one memory controller.

3.4.2 UART Configuration

The UART implemented in Or1ksim follows the specification of the National Semiconductor
16450 and 16550 parts. It is a memory mapped component, which resides on the main OpenRISC
Wishbone data bus.
The component provides a number of interfaces to emulate the behavior of an external terminal
connected to the UART.
UART configuration is described in section uart. This section may appear multiple times,
specifying multiple UARTs. The following parameters may be specified.

enabled = 0|1
If 1 (true, the default), this UART is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the UART’s memory mapped registers to value. The default
is 0, which is probably not a sensible value.
The UART has a 3 bit address bus, with a total of 8 8-bit registers, at addresses
0x0 through 0x7.

channel = "type:args"
Specify the channel representing the terminal connected to the UART Rx & Tx
pins.

channel="file:‘rxfile’,‘txfile’"
Read input characters from the file ‘rxfile’ and write output characters
to the file ‘txfile’ (which will be created if required).

Chapter 3: Configuration 24

channel="xterm:args"
Create an xterm on startup, write UART Tx traffic to the xterm and
take Rx traffic from the keyboard when the xterm window is selected.
Additional arguments to the xterm command (for example specifying
window size may be specified in args, or this may be left blank.

channel="tcp:value"
Open the TCP/IP port specified by value and read and write UART
traffic from and to it.
Typically a telnet session is connected to the other end of this port.

Tip: There is no registered port for Or1ksim telnet UART
connection. Priviledged access is required to read traffic
on the registered “well-known” telnet port (23). Instead
users should use port values in the Dynamic or Private port
range, i.e. 49152-65535.

channel="fd:rxfd,txfd"
Read and write characters from and to the existing open numerical file
descriptors, file rxfd and txfd.

channel="tty:device=/dev/ttyS0,baud=9600"
Read and write characters from and to a physical serial port. The
precise device (shown here as /dev/ttyS0) may vary from machine to
machine.

The default value for this field is "xterm:".

irq = value

Use value as the IRQ number of this UART. Default value 0.

16550 = 0|1
If 1 (true), the UART has the functionality of a 16550. If 0 (the default), it has
the functionality of a 16450. The principal difference is that the 16550 can buffer
multiple characters.

jitter = value

Set the jitter, modeled as a time to block, to value milliseconds. Set to -1 to disable
jitter modeling. Default value 0.

Note: This functionality has yet to be implemented, so this parameter
has no effect.

vapi_id = value

value specifies the value of the Verification API (VAPI) base address to be used
with the UART. See Chapter 5 [Verification API], page 35, for more details, which
details the use of the VAPI with the UART.

3.4.3 DMA Configuration

The DMA controller used in Or1ksim is the component implemented at OpenCores, and found
in the top level SVN directory, ‘wb_dma’. It is described in the document Wishbone DMA/Bridge
IP Core by Rudolf Usselmann, which can be found in the ‘doc’ subdirectory. It is a memory
mapped component, which resides on the main OpenRISC Wishbone data bus. The present
implementation is incomplete, intended only to support the Ethernet interface (see Section 3.4.4
[Ethernet Configuration], page 25), although the Ethernet interface is not yet completed.
DMA configuration is described in section dma. This section may appear multiple times, spec-
ifying multiple DMA controllers. The following parameters may be specified.

Chapter 3: Configuration 25

enabled = 0|1
If 1 (true, the default), this DMA controller is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the DMA’s memory mapped registers to value. The default
is 0, which is probably not a sensible value.
The DMA controller has a 10 bit address bus, with a total of 253 32-bit registers.
The first 5 registers at addresses 0x000 through 0x010 control the overall behavior
of the DMA controller. There are then 31 blocks of 8 registers, controlling each of
the 31 DMA channels available. Addresses 0x014 through 0x01c are not used.

irq = value

Use value as the IRQ number of this DMA controller. Default value 0.

vapi_id = value

value specifies the value of the Verification API (VAPI) base address to be used with
the DMA controller. See Chapter 5 [Verification API], page 35, for more details,
which details the use of the VAPI with the DMA controller.

3.4.4 Ethernet Configuration

The Ethernet MAC used in Or1ksim is the component implemented at OpenCores, and found
in the top level SVN directory, ‘ethmac’. It also forms part of the OpenRISC SoC, ORPSoC.
It is described in the document Ethernet IP Core Specification by Igor Mohor, which can be
found in the ‘doc’ subdirectory. It is a memory mapped component, which resides on the main
OpenRISC Wishbone data bus.
Ethernet configuration is described in section ethernet. This section may appear multiple
times, specifying multiple Ethernet interfaces. The following parameters may be specified.

enabled = 0|1
If 1 (true, the default), this Ethernet MAC is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the MAC’s memory mapped registers to value. The default
is 0, which is probably not a sensible value.
The Ethernet MAC has a 7-bit address bus, with a total of 21 32-bit registers.
Addresses 0x54 through 0x7c are not used.

Note: The Ethernet specification describes a Tx control register,
TXCTRL, at address 0x50. However this register is not implemented
in the Or1ksim model.

dma = value

value specifies the DMA controller with which this Ethernet is associated. The
default value is 0.

Note: Support for external DMA is not provided in the current imple-
mentation, and this value is ignored. In any case there is no equivalent
field to which this can be matched in the current DMA component
implementation (see Section 3.4.3 [DMA Configuration], page 24).

irq = value

Use value as the IRQ number of this Ethernet MAC. Default value 0.

rtx_type = 0|1
If 1 (true) use a socket interface to the Ethernet (see parameter sockif below). If 0
(the default), use a file interface, reading and writing from and to the files specified
in the rxfile and txfile parameters (see below).

Chapter 3: Configuration 26

Note: By default the socket interface is not provided in Or1ksim. If
it is required, this must be requested when configuring, by use of the
--enable-ethphy option to configure.

configure --target=or32-uclinux --enable-ethphy ...

rx_channel = rxvalue

tx_channel = txvalue

rxvalue specifies the DMA channel to use for receive and txvalue the DMA channel
to use for transmit. Both default to 0.

Note: As noted above, support for external DMA is not provided in the
current implementation, and so these values are ignored.

rxfile = "rxfile"
txfile = "txfile"

When rtx_type is 0 (see above), rxfile specifies the file to use as input and txfile
specifies the fie to use as output.
The file contains a sequence of packets. Each packet consists of a packet length
(32 bits), followed by that many bytes of data. Once the input file is empty, the
Ethernet MAC behaves as though there were no data on the Ethernet. The default
values of these parameters are "eth_rx" and "eth_tx" respectively.
The input file must exist and be readable. The output file must be writable and
will be created if necessary. If either of these conditions is not met, a warning will
be given.

sockif = "service"
When rtx_type is 1 (see above), service specifies the service to use for communi-
cation. This may be TCP/IP or UDP/IP. The default value of this parameter is
"or1ksim_eth".

vapi_id = value

value specifies the value of the Verification API (VAPI) base address to be used
with the Ethernet PHY. See Chapter 5 [Verification API], page 35, for more details,
which details the use of the VAPI with the DMA controller.

3.4.5 GPIO Configuration

The GPIO used in Or1ksim is the component implemented at OpenCores, and found in the top
level SVN directory, ‘gpio’. It is described in the document GPIO IP Core Specification by
Damjan Lampret and Goran Djakovic, which can be found in the ‘doc’ subdirectory. It is a
memory mapped component, which resides on the main OpenRISC Wishbone data bus.
GPIO configuration is described in section gpio. This section may appear multiple times,
specifying multiple GPIO devices. The following parameters may be specified.

enabled = 0|1
If 1 (true, the default), this GPIO is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the GPIO’s memory mapped registers to value. The default
is 0, which is probably not a sensible value.
The GPIO has a 6 bit address bus, with a total of 10 32-bit registers, although the
number of bits that are actively used varies. Addresses 0x28 through 0x3c are not
used.

irq = value

Use value as the IRQ number of this GPIO. Default value 0.

Chapter 3: Configuration 27

vapi_id = value

value specifies the value of the Verification API (VAPI) base address to be used with
the GPIO. See Chapter 5 [Verification API], page 35, for more details, which details
the use of the VAPI with the GPIO controller. For backwards compatibility, the
alternative name base_vapi_id is supported for this parameter, but deprecated.

3.4.6 Display Interface Configuration

Or1ksim models a VGA interface to an external monitor. The VGA controller used in Or1ksim is
the component implemented at OpenCores, and found in the top level SVN directory, ‘vga_lcd’,
with no support for the optional hardware cursors. It is described in the document VGA/LCD
Core v2.0 Specifications by Richard Herveille, which can be found in the ‘doc’ subdirectory. It
is a memory mapped component, which resides on the main OpenRISC Wishbone data bus.
The current implementation provides only functionality to dump the screen to a file at intervals.
VGA controller configuration is described in section vga. This section may appear multiple
times, specifying multiple VGA controllers. The following parameters may be specified.

enabled = 0|1
If 1 (true, the default), this VGA is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the VGA controller’s memory mapped registers to value.
The default is 0, which is probably not a sensible value.
The VGA controller has a 12-bit address bus, with 7 32-bit registers, at addresses
0x000 through 0x018, and two color lookup tables at addresses 0x800 through 0xfff.
The hardware cursor registers are not implemented, so addresses 0x01c through
0x7fc are not used.

irq = value

Use value as the IRQ number of this VGA controller. Default value 0.

refresh_rate = value

value specifies number of cycles between screen dumps. Default value is derived from
the simulation clock cycle time (see Section 3.2.1 [Simulator Behavior], page 12), to
correspond to dumping 50 times per simulated second.

txfile = "file"
file specifies the base of the filename for screen dumps. Successive screen dumps
will be in BMP format, in files with the name ‘filennnn.bmp’, where nnnn is a
sequential count of the screen dumps starting at zero. The default value is "vga_
out". For backwards compatibility, the alternative name filename is supported for
this parameter, but deprecated.

3.4.7 Frame Buffer Configuration

Caution: The frame buffer is only partially implemented. Its configuration fields
are described here, but the component should not be used at this time. Like the
VGA controller, it is designed to make screen dumps to file.

Frame buffer configuration is described in section fb. This section may appear multiple times,
specifying multiple frame buffers. The following parameters may be specified.

enabled = 0|1
If 1 (true, the default), this frame buffer is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the frame buffer’s memory mapped registers to value. The
default is 0, which is probably not a sensible value.

Chapter 3: Configuration 28

The frame buffer has an 121-bit address bus, with 4 32-bit registers, at addresses
0x000 through 0x00c, and a PAL lookup table at addresses 0x400 through 0x4ff.
Addresses 0x010 through 0x3fc and addresses 0x500 through 0x7ff are not used.

refresh_rate = value

value specifies number of cycles between screen dumps. Default value is derived from
the simulation clock cycle time (see Section 3.2.1 [Simulator Behavior], page 12), to
correspond to dumping 50 times per simulated second.

txfile = "file"
file specifies the base of the filename for screen dumps. Successive screen dumps
will be in BMP format, in files with the name ‘filennnn.bmp’, where nnnn is a
sequential count of the screen dumps starting at zero. The default value is "fb_
out". For backwards compatibility, the alternative name filename is supported for
this parameter, but deprecated.

3.4.8 Keyboard Configuration (PS2)

The PS2 interface provided by Or1ksim is not documented. It may be based on the PS2 project
at OpenCores, and found in the top level SVN directory, ‘ps2’. However this project lacks any
documentation beyond its project webpage. Since most PS2 interfaces follow the Intel i8042
standard, this is presumably what is expected with this device.

The implementation only provides for keyboard support, which is modelled as a file of keystrokes.
There is no mouse support.

Caution: A standard i8042 device has two registers at addresses 0x60 (command)
and 0x64 (status). Inspection of the code, suggests that the Or1ksim component
places these registers at addresses 0x00 and 0x04.

The port of Linux for the OpenRISC 1000, which runs on Or1ksim implements the
i8042 device driver, anticipating these registers reside at their conventional address.
It seems unlikel that this code will work.

This component should be used with caution.

Keyboard configuration is described in section kbd. This section may appear multiple times,
specifying multiple keyboard interfaces. The following parameters may be specified.

enabled = 0|1
If 1 (true, the default), this keyboard is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the keyboard’s memory mapped registers to value. The
default is 0, which is probably not a sensible value.

The keyboard PS/2 interface has an 3-bit address bus, with 2 8-bit registers, at
addresses 0x000 and 0x004.

Caution: As noted above, a standard Intel 8042 interface would expect
to find these registers at locations 0x60 and 0x64, thus requiring at least
a 7-bit bus.

irq = value

Use value as the IRQ number of this Keyboard interface. Default value 0.

rxfile = "file"
‘file’ specifies a file containing raw key stroke data, which models the input from
a physical keyboard. The default value is "kbd_in".

Chapter 3: Configuration 29

3.4.9 Disc Interface Configuration

The ATA/ATAPI disc controller used in Or1ksim is the OCIDEC (OpenCores IDE Controller)
component implemented at OpenCores, and found in the top level SVN directory, ‘ata’. It is
described in the document ATA/ATAPI-5 Core Specification by Richard Herveille, which can
be found in the ‘doc’ subdirectory. It is a memory mapped component, which resides on the
main OpenRISC Wishbone data bus.

Warning: In the current release of Or1ksim, parsing of the ATA section is broken.
Users should not configure the disc interface in this release.

ATA/ATAPI configuration is described in section ata. This section may appear multiple times,
specifying multiple disc controllers. The following parameters may be specified.

enabled = 0|1
If 1 (true, the default), this ATA/ATAPI interface is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the ATA/ATAPI interface’s memory mapped registers to
value. The default is 0, which is probably not a sensible value.

The ATA/ATAPI PS/2 interface has an 5-bit address bus, with 8 32-bit registers.
Depending on the version of the OCIDEC ATA/ATAPI interface selected (see dev_
id below), not all registers will be available.

irq = value

Use value as the IRQ number of this ATA/ATAPI interface. Default value 0.

dev_id = 1|2|3
This parameter specifies which version of the OCIDEC ATA/ATAPI interface to
model. The default value is 1.

Version 1 supports only the CTRL, STAT and PCTR registers. Versions 2 & 3 add the
FCTR registers, Version 3 adds the DTR registers and the RXD/TXD registers.

rev = value

Set the value as the revision of the OCIDEC ATA/ATAPI interface. The default
value is 1. The default value is 0. Its value should be in the range 0-15. Larger
values are truncated with a warning. This only affects the reset value of the STAT
register, where it forms bits 24-27.

pio_mode0_t1 = value

pio_mode0_t2 = value

pio_mode0_t4 = value

pio_mode0_teoc = value

These parameters specify the timings for use with Programmed Input/Output (PIO)
transfers. They are specified as the number of clock cycles - 2, rounded up to the
next highest integer, or zero if that would be negative. The values should not exceed
255. If they do, they will be ignored with a warning.

See the ATA/ATAPI-5 specification for explanations of each of these timing param-
eters. The default values are:

pio_mode0_t1 = 6
pio_mode0_t2 = 28
pio_mode0_t4 = 2
pio_mode0_teoc = 23

Chapter 3: Configuration 30

dma_mode0_tm = value

dma_mode0_td = value

dma_mode0_teoc = value

These parameters specify the timings for use with DMA transfers. They are specified
as the number of clock cycles - 2, rounded up to the next highest integer, or zero if
that would be negative. The values should not exceed 255. If they do, they will be
ignored with a warning.
See the ATA/ATAPI-5 specification for explanations of each of these timing param-
eters. The default values are:

dma_mode0_tm = 4
dma_mode0_td = 21
dma_mode0_teoc = 21

3.4.9.1 ATA/ATAPI Device Configuration

Within the section ata, each device is specified separately. The device subsection is introduced
by

device value

value is the device number, which should be 0 or 1. The subsection ends with enddevice.
Note that if the same device number is specified more than once, the previous values will be
overwritten. Within the device subsection, the following parameters may appear:

type = value

valuespecifies the type of device: 0 (the default) for “not connected”, 1 for hard
disk simulated in a file and 2 for local system hard disk.

file = "filename"
‘filename’ specifies the file to be used for a simulated ATA device if the file type
(see type above) is 1. Default value "ata_filen", where n is the device number.

size = value

value specifies the size of a simulated ATA device if the file type (see type above)
is 1. The default value is zero.

packet = 0|1
If 1 (true), implement the PACKET command feature set. If 0 (the default), do not
implement the PACKET command feature set.

firmware = "str"
Firmware to report in response to the “Identify Device” command. Default
"02207031".

heads = value

Number of heads in the device. Default 7, use -1 to disable all heads.

sectors = value

Number of sectors per track in the device. Default 32.

mwdma = 0|1|2|-1
Highest multi-word DMA mode supported. Default 2, use -1 to disable.

pio = 0|1|2|3|4
Highest PIO mode supported. Default 4.

3.4.10 Generic Peripheral Configuration

When used as a library (see Section 2.4 [Simulator Library], page 7), Or1ksim makes provision
for any additional peripheral to be implemented externally. Any read or write access to this

Chapter 3: Configuration 31

peripheral’s memory map generates upcalls to an external handler. This interface can support
either C or C++, and was particularly designed to facilitate support for OSCI SystemC (see
http://www.systemc.org).
Generic peripheral configuration is described in section generic. This section may appear
multiple times, specifying multiple external peripherals. The following parameters may be spec-
ified.

enabled = 0|1
If 1 (true, the default), this ATA/ATAPI interface is enabled. If 0, it is disabled.

baseaddr = value

Set the base address of the generic peripheral’s memory mapped registers to value.
The default is 0, which is probably not a sensible value.
The size of the memory mapped register space is controlled by the size paramter,
described below.

size = value

Set the size of the generic peripheral’s memory mapped register space to value bytes.
Any read or write accesses to addresses with offsets of 0 to value-1 bytes from the
base address specified in parameter baseaddr (see above) will be directed to the
external interface.
value will be rounded up the nearest power of 2. It’s default value is zero. If value
is not an exact power of two, accesses to address offsets of value or above up to the
next power of 2 will generate a warning, and have no effect (reads will return zero).

name = "str"
This gives the peripheral the name "str". This is used to identify the peripheral
in error messages and warnings, and when reporting its status. The default value is
"anonymous external peripheral".

byte_enabled = 0|1
hw_enabled = 0|1
word_enabled = 0|1

If 1 (true, the default), these parameters respectively enable the device for byte
wide, half-word wide and word wide accesses. If 0, accesses of that width will fail.

http://www.systemc.org

Chapter 4: Interactive Command Line 32

4 Interactive Command Line

If started with the -f flag, or if interrupted with ctrl-C, Or1ksim provides the user with an
interactive command line. The commands available, which may not be abbreviated, are:

q Exit the simulator

r Display all the General Purpose Registers (GPRs). Also shows the just executed
and next to be executed instructions symbolically and the state of the flag in the
Supervision Register.

t Execute the next instruction and then display register/instruction information as
with the r command (see above).

run num [hush]
Execute num instructions. The register/instruction information is displayed after
each instruction, as with the r command (see above) unless hush is specified.

pr reg value

Patch register reg with value.

dm fromaddr [toaddr]
Display memory bytes between fromaddr and toaddr. If toaddr is not given, 64
bytes are displayed, starting at fromaddr.

Caution: The output from this command is broken (a bug). Or1ksim
attempts to print out 16 bytes per row. However, instead of printing
out the address at the start of each row, it prints the address (of the
first of the 16 bytes) before each byte.

de fromaddr [toaddr]
Disassemble code between fromaddr and toaddr. If toaddr is not given, 16 instruc-
tions are disassembled.
The disassembly is entirely numerical, and gives no symbolic information.

pm addr value

Patch the 4 bytes in memory starting at addr with the 32-bit value.

pc value Patch the program counter with value.

cm fromaddr toaddr size

Copy size bytes in memory from fromaddr to toaddr.

break addr

Toggle the breakpoint set at addr.

breaks List all set breakpoints

reset Reset the simulator. Includes modeling a reset of the processor, so execution will
restart from the reset vector location, 0x100.

hist If saving the execution history has been configured (see Section 3.2.1 [Simulator
Behavior], page 12), display the execution history.

stall Stall the processor, so that control is passed to the debug unit. When stalled, the
processor can execute no instructions. This command is useful when debugging the
JTAG interface, used by debuggers such as GDB.

unstall Unstall the processor, so that normal execution can continue. This command is
useful when debugging the JTAG interface, used by debuggers such as GDB.

Chapter 4: Interactive Command Line 33

stats category | clear
Print the statistics for the given category , if available, or clear if clear is specified.
The categories are:

1 Miscellaneous statistics: branch predictions (if branch predictions are
enabled), branch target cache model (if enabled), cache (if enbaled),
MMU (if enabled) and number of addtional load & store cycles.

See Section 3.3 [Configuring the OpenRisc Achitectural Components],
page 15, for details of how to enable these various features.

2 Instruction usage statistics. Requires hazard analysis to be enabled (see
Section 3.3.1 [CPU Configuration], page 15).

3 Instruction dependency statistics. Requires hazard analysis to be en-
abled (see Section 3.3.1 [CPU Configuration], page 15).

4 Functional unit dependency statistics. Requires hazard analysis to be
enabled (see Section 3.3.1 [CPU Configuration], page 15).

5 Raw register usage over time. Requires hazard analysis to be enabled
(see Section 3.3.1 [CPU Configuration], page 15).

6 Store buffer statistics. Requires the store buffer to be enabled (see
Section 3.3.1 [CPU Configuration], page 15).

info Display detailed information about the simulator configuration. This is quite a
lengthy about, because all MMU TLB information is displayed.

dv fromaddr [toaddr] [module]
Dump the area of memory between fromaddr and toaddr as Verilog code for a
synchronous, 23-bit wide SRAM module, named module. If toaddr is not specified,
then 64 bytes are dumped (as 16 32-bit words). If module is not specified, or1k_mem
is used.

To save to a file, use the redirection function (described after this table, below).

dh fromaddr [toaddr]
Dump the area of memory between fromaddr and toaddr as 32-bit hex numbers
(no 0x, or 32’h prefix). If toaddr is not specified, then 64 bytes are dumped (as 16
32-bit words).

To save to a file, use the redirection function (described after this table, below).

setdbch Toggle debug channels on/off. See Section 2.1 [Standalone Simulator], page 5, for a
description of specifying debug channels on the command line.

set section param = value

Set the configuration parameter para in section section to value. See Chapter 3
[Configuration], page 11, for details of configuration parameters and their settings.

debug Toggle the simulator debug mode. See Section 3.3.8 [Debug Interface Configuration],
page 21, for information on this parameter.

Caution: This is effectively enabling or disabling the debug unit. It does
not effect the remote GDB debug interface. However using the remote
debug interface while the debug unit is disabled will lead to undefined
behavior and likely crash Or1ksim

cuc Enter the the Custom Unit Compiler command prompt (see Section 3.2.3 [CUC
Configuration], page 14).

Chapter 4: Interactive Command Line 34

Caution: The CUC must be properly configured, for this to succeed.
In particular a timing file must be available and readable. Otherwise
Or1ksim will crash.

help Print out brief information about each command available.

mprofile [-vh] [-m m] [-g n] [-f file] from to

Run the memory profiling utility. This follows the same usage as the standalone
command (see Section 2.3 [Memory Profiling Utility], page 7).

profile [-vhcq] [-g file]
Run the instruction profiling utility. This follows the same usage as the standalone
command (see Section 2.2 [Profiling Utility], page 6).

For all commands, it is possible to redirect the output to a file, by using the redirection operator,
>.

command > filename

This is particularly useful for commands dumping a large amount of output, such as dv.
Caution: Unfortunately there is a serious bug with the redirection operator. It does
not return output to standard output after the command completes. Until this bug
is fixed, file redirection should not be used.

Chapter 5: Verification API (VAPI) 35

5 Verification API (VAPI)

The Verification API (VAPI) provides a TCP/IP interface to allow components of the simulation
to be controlled externally. The interface is polled for new requests on each simulated clock cycle.
Components within the simulator may send responses to such requests.

The inteface is an asynchronous duplex protocol. On the request side it provides for simple
commands, known as VAPI IDs (a 32 bit integer), with a single piece of data (also a 32 bit
integer). On the send side, it provides for sending a single VAPI ID and data. However there
is no explicit command-response structure. Some components just accept requests (e.g. to set
values), some just generate sends (to report values), and some do both.

Each component has a base ID (32 bit) and its commands will start from that base ID. This
provides a simple partitioning of the command space amongst components. Request commands
will be directed to the component with the closest base ID lower than the VAPI ID of the
command.

Thus if there are two components with base IDs of 0x200 and 0x300, and a request with VAPI
ID of 0x203 is received, it will be directed to the first component as its command #3.

The results of VAPI interactions are logged (by default in ‘vapi.log’ unless an alternative is
specified in section vapi).

Currently the following components support VAPI:

Debug Unit
Although the Debug Unit can specify a base VAPI ID, it is not used to send com-
mands or receive requests.
Instead, if the base VAPI ID is set, all remote JTAG protocol exchanges are logged
in the VAPI log file.

UART If a base VAPI ID is specified, the UART sends details of any chars or break char-
acters sent, with dteails of the line control register etc encoded in the data packet
sent.
This supports a single VAPI command request, but encodes a sub-command in the
top 8 bits of the associated data.

0x00 This stuffs the least significant 8 bits of the data into the serial register
of the UART and the next 8 bits into the line control register, effectively
providing control of the next character to be sent or received.

0x01 The divisor latch bytes are set from the least significant 16 bits of the
data.

0x02 The line control register is set from bits 15-8 of the data.

0x03 The UART skew is set from the least significant 16 bits of the data

0x04 If the 16th most significant bit of the data is 1, start sending breaks,
otherwise stop sending breaks. The breaks are sent or cleared after the
number of UART clock divider ticks specified by the data (immediately
if the data is zero).

DMA Although the DMA unit supports a base VAPI ID in its configuration
(section dma), no VAPI data is sent, nor VAPI requests currently implemented.

Ethernet The following requests are handled by the Ethernet. Specified symbolically, these
are the increments from the base VAPI ID of the Ethernet. At present no imple-
mentation is provided behind these VAPI requests.

Chapter 5: Verification API (VAPI) 36

ETH_VAPI_DATA (0)
ETH_VAPI_CTRL (0)

GPIO If a base VAPI ID is specified, the GPIO sends out on its base VAPI ID (symbolically,
GPIO VAPI DATA (0) offset from the base VAPI ID) any changes in outputs.
The following requests are handled by the GPIO. Specified symbolically, these are
the increments from the VAPI base ID of the GPIO.

GPIO_VAPI_DATA (0)
Set the next input to the commands data field

GPIO_VAPI_AUX (1)
Set the GPIO auxiliary inputs to the data field

GPIO_VAPI_CLOCK (2)
Add an external GPIO clock trigger of period specified in the data field.

GPIO_VAPI_RGPIO_OE (3)
Set the GPIO output enable to the data field

GPIO_VAPI_RGPIO_INTE (4)
Set the next interrupt to the data field

GPIO_VAPI_RGPIO_PTRIG (5)
Set the next trigger to the data field

GPIO_VAPI_RGPIO_AUX (6)
Set the next auxiliary input to the data field

GPIO_VAPI_RGPIO_CTRL (7)
Set th next control input to the data field

Chapter 6: A Guide to Or1ksim Internals 37

6 A Guide to Or1ksim Internals

These are notes to help those wanting to extend Or1ksim. This section assumes the use of a tag
file, so file locations of entities’ definitions are not in general provided. For more on tags, see
the Linux manual page for etags. A tag file can be created with:

make tags

6.1 Coding Conventions for Or1ksim

This chapter provides some guidelines for coding, to facilitate extensions to Or1ksim

GNU Coding Standard
Code should follow the GNU coding standard for C
(http://www.gnu.org/prep/standards/. If in doubt, put your code
through the indent program.

#include headers
All C source code files should include ‘config.h’ before any other file.
This should be followed by inclusion of any system headers (but see the comments
about portability and ‘port.h’ below) and then by any Or1ksim package headers.
If ‘port.h’ is required, it should be the first package header to be included after the
system headers.
All C source code and header files should directly include any system or package
header they depend on, i.e. not rely on any other header having already included
it. The two exceptions are
1. All header files may assume that ‘config.h’ has already been included.
2. System headers which impose portability problems should be included by using

the package header ‘port.h’, rather than the system headers themselves. This
is the case for code requiring
• strndup (from ‘string.h’)
• Integer types (intn_t, uintn_t) (from ‘inttypes.h’).
• isblank (from ‘ctype.h’)

#include files once only
All include files should be protected by #ifndef to ensure their definitions are only
included once. For instance a header file ‘x-y.h ’ should surround its contents with:

#ifndef X_Y__H
#define X_Y__H

<body of the include file>

#endif /* X_Y__H */

Avoid typedef
The GNU coding style for C does not have a clear way to distinguish between user
type name and user variables. For this reason typedef should be avoided except for
the most ubiquitous user defined types. This makes the code much easier to read.
There are some typedef declarations in the argtable2 library and the ELF and
COFF headers, because this code is taken from other places.
Within Or1ksim legacy uses of typedef have largely been purged, except in the Cus-
tom Unit Compiler (see Section 3.2.3 [Custom Unit Compiler (CUC) Configuration],
page 14).
The remaining uses of typedef occur in two places:

http://www.gnu.org/prep/standards/

Chapter 6: A Guide to Or1ksim Internals 38

• ‘port/port.h’ defines types to replace those in header files that are not available
(character functions, string duplication, integer types).
‘cpu/or1k/arch.h’ defines types for the key Or1ksim entities: addresses
(oraddr_t), unsigned register values (uorreg_t) and signed register (orreg_t)
values.

Where new types are defined, they should appear in one of these two files as appro-
priate. Or1ksim specific types appearing in ‘arch.h’ should always have the suffix
‘_h’.

Don’t begin names with underscore
Names beginning with _ are intended to be part of the C infrastructure. They
should not be used in the simulator code.

Keep Non-global top level entities static
All top level entities (functions, variables), which are not explicitly part of a global
interface should be declared static. This ensures that unwanted connections are not
inadvertently built across the program.

Use of inline
Code should not be declared inline. Modern compilers can work out for themselves
what is best in this respect.

Initialization
All data structures should be explicitly initialized. In particular code should not
rely on static data structures being initialized to zero.
The rationale is that in future static data structures may become dynamic. This
has been a particular source of bugs in Or1ksim historically.
A specific case is with new peripherals, which should always include a start function
to pre-initialize all configuration parameters to sensible defaults

Configuration Validation
All configuration values should be validated, preferably when encountered, if not
when the section is closed, or otherwise at run time when the parameter is first
used.

6.2 Global Data Structures

config The global variable config of type struct config holds the configuration data
for some of the Or1ksim components which are always present. At present the
components are:
• The simulator defined in section sim (see Section 3.2 [Simulator Configura-

tion], page 12).
• The Verification API (VAPI) defined in section vapi (see Section 3.2.2 [Veri-

fication API (VAPI) Configuration], page 14).
• The Custom Unit Compiler (CUC), defined in section cuc (see Section 3.2.3

[Custom Unit Compiler (CUC) Configuration], page 14).
• The CPU, defined in section cpu (see Section 3.3.1 [CPU Configuration],

page 15).
• The data cache (but not the instruction cache), defined in section dc (see

Section 3.3.4 [Cache Configuration], page 19).
• The power management unit, defined in section pm (see Section 3.3.6 [Power

Management Configuration], page 20).

Chapter 6: A Guide to Or1ksim Internals 39

• The programmable interrupt controller, defined in section pic (see
Section 3.3.5 [Interrupt Configuration], page 20).

• Branch prediciton, defined in section bpb (see Section 3.3.7 [Branch Prediction
Configuration], page 21).

• The debug unit, defined in section debug (see Section 3.3.8 [Debug Interface
Configuration], page 21).

This struct is made of a collection of structs, one for each component. For example
the simulator configuration is held in config.sim.

config This is a linked list of data structures holding configuration data for all sections
which are not held in the main config data structure. In general these are compo-
nents (such as peripherals and memory) which may occur multiple times. However
it also handles some architectural components which may occur only once, such as
the memory management units, the instruction cache, the interrupt controller and
branch prediction.

runtime The global variable runtime of type struct runtime holds all the runtime infor-
mation about the simulation. To access this variable, ‘sim-config.h’ must be
included.
This struct is itself made of 3 other structs, cpu (for CPU run time state), vapi (for
Verification API state) and cuc (for Custom Unit Compiler state).

6.3 Concepts

Output Redirection
The current output stream is held in runtime.cpu.fout. Output should be ex-
plicitly written to this stream, or may use the PRINTF macro, which will write its
arguments to this output stream.

Reset Hooks
Any peripheral may register a routine to be called when the the processor is reset
by calling reg_sim_reset, providing a function and pointer to a data structure as
arguments. On reset that function will be called with the data stucture pointer as
argument.

6.4 Internal Debugging

The function debug is like printf, but with an extra first argument, which is the debug level. If
the debug level specified in the simulator configuration (see Section 3.2.1 [Simulator Behavior],
page 12) is greater than or equal to this value, the remaining arguments are printed to the
current output stream (see [Output Redirection], page 39).

6.5 Regression Testing

Or1ksim now includes a regression test suite for both standalone and library usage as described
earlier (see Section 1.3 [Building and Installing], page 4). Running the tests requires that the
OpenRISC toolchain and DejaGNU are both installed.
Tests are written using expect, a derivative of TCL. Documentation of DejaGnu, expect and
TCL are freely available on the Web. The Embecosm Application Note 8, Howto: Using De-
jaGnu for Testing: A Simple Introduction (http://www.embecosm.com/download/ean8.html)
provides a concise introduction.
All test code is found in the ‘testsuite’ directory. The key files and directories used are as
follows.

http://www.embecosm.com/download/ean8.html

Chapter 6: A Guide to Or1ksim Internals 40

global-conf.exp
This is the global DejaGNU configuration file used to set up parameters common to
all tests. If the user has the environment varialbe DEJAGNU defined, it will be used
instead, but this is not recommended.

Makefile.am
This is the top level automake file for the testsuite. The only changes likely to be
needed here is additional local cleanup of files created by new tests.

README This contains details of all the tests

config This contains DejaGnu board configurations. Since the tests are generally run on a
Unix host, this should just contain ‘Unix.exp’.

lib This contains DejaGnu tool specific configurations. “Tool” has a specific meaning
in DejaGNU, referring just to a grouping of tests. In this case there are two such
“tools”, “or1ksim” and “libsim” for tests of the standalone tool and tests of the
library.
Corresponding to this, there are two tool specific configuration files, ‘or1ksim.exp’
and ‘libsim.exp’. These contain expect/TCL procedures for common use among
the tests.

libsim.tests
or1ksim.tests

These are the directories of tests of the Or1ksim library. They also include Or1ksim
configuration files and each has a ‘Makefile.am’ file. ‘Makefile.am’ should be
updated whenever files are added to this directory, to ensure they are included in
the distribution.

test-code
These are all the test programs to be compiled on the host (each in its own directory).
In general these are programs to support testing of the library, and build various
programs linking in the library.

test-code
These are all the test programs to be compiled with the OpenRISC tool chain to
run with either standalone Or1ksim or the library. This directory includes its own
‘configure.ac’, since it must set up a separate tool chain based on the target, not
the host.

To add a new test needs the following steps.
• Put new host C code in its own directory within ‘test-code’. Add the directory to the

existing ‘Makefile.am’ in the ‘test-code’ directory and create a ‘Makefile.am’ in the new
directory to drive building the test program(s). Don’t forget to add the new ‘Makefile’ to
the top level ‘configure.ac’ so it gets generated. Not all tests require code here.

• Put new target C code in its own directory within ‘test-code-or1k’. Once again modify
& create ‘Makefile.am’. This time modify the ‘configure.ac’ in the ‘test-code-or1k’
so the ‘Makefile’ gets generated. The existing programs provide examples to start from,
including custom linker scripts where needed.

• Add one or more tests and configuration files to the relevant “tool” test directory. Use the
existing tests as templates. They make heavy use of the expect/TCL procedures in the
‘config’ directory to facilitate driving the tests.

Chapter 7: GNU Free Documentation License 41

7 GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

Chapter 7: GNU Free Documentation License 42

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

Chapter 7: GNU Free Documentation License 43

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

Chapter 7: GNU Free Documentation License 44

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

Chapter 7: GNU Free Documentation License 45

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

http://www.gnu.org/copyleft/

Chapter 7: GNU Free Documentation License 46

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Chapter 7: GNU Free Documentation License 47

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Index 48

Index

-
--cumulative . 6
--debug-config . 6
--disable-all-tests . 3
--disable-arith-flag . 3
--disable-debug . 3
--disable-ethphy . 2
--disable-ov-flag . 4
--disable-profiling . 2
--disable-range-stats . 3
--disable-unsigned-xori . 3
--enable-all-tests . 3
--enable-arith-flag . 3
--enable-debug . 3
--enable-ethphy . 2
--enable-execution . 2
--enable-mprofile . 6
--enable-ov-flag . 4
--enable-profile . 6
--enable-profiling . 2
--enable-range-stats . 3
--enable-unsigned-xori . 3
--file . 5
--filename . 7
--generate . 7
--group . 7
--help . 5
--help (memory profiling utility) 7
--help (profiling utility) . 6
--interactive . 5
--memory . 5
--mode . 7
--nosrv . 5
--quiet . 5, 7
--report-memory-errors . 6
--srv . 5
--strict-npc . 6
--verbose . 5
--version . 5
--version (memory profiling utility) 7
--version (profiling utility) . 6
-c . 6
-d . 6
-f . 5, 7
-g . 7
-h . 5
-h (memory profiling utility) . 7
-h (profiling utility) . 6
-i . 5
-m . 5, 7
-q . 5, 7
-v . 5
-V . 5
-v (memory profiling utility) . 7
-v (profiling utility) . 6

0
0x00 UART VAPI sub-command (UART verification)

. 35

0x01 UART VAPI sub-command (UART verification)
. 35

0x02 UART VAPI sub-command (UART verification)
. 35

0x03 UART VAPI sub-command (UART verification)
. 35

0x04 UART VAPI sub-command (UART verification)
. 35

1
16550 (UART configuration) . 24

A
all tests enabled . 3
Argtable2 debugging . 3
ATA/ATAPI configuration . 29
ATA/ATAPI device configuration 30

B
base_vapi_id (GPIO configuration - deprecated)

. 27
baseaddr (ATA/ATAPI configuration) 29
baseaddr (DMA configuration) 25
baseaddr (Ethernet configuration) 25
baseaddr (frame buffer configuration) 27
baseaddr (generic peripheral configuration) 31
baseaddr (GPIO configuration) 26
baseaddr (keyboard configuration) 28
baseaddr (memory configuration) 17
baseaddr (memory controller configuration) 23
baseaddr (UART configuration) 23
baseaddr (VGA configuration) 27
blocksize (cache configuration) 20
BPB configuration . 21
branch prediction configuration 21
break (Interactive CLI) . 32
breakpoint list (Interactive CLI) 32
breakpoint set/clear (Interactive CLI) 32
breaks (Interactive CLI) . 32
btic (branch prediction configuration) 21
byte_enabled (generic peripheral configuration) . . 31

C
cache configuration . 19
calling_convention (CUC configuration) 15
ce (memory configuration) . 18
cfgr (CPU configuration) . 15
channel (UART configuration) 23
clear breakpoint (Interactive CLI) 32
clkcycle (simulator configuration) 13
cm (Interactive CLI) . 32
command line for Or1ksim standalone use 5
complex model . 2
config . 38
config.bpb . 39
config.cpu . 38

Index 49

config.cuc . 38
config.dc . 38
config.debug . 39
config.pic . 39
config.pm . 38
config.sim . 38
config.vapi . 38
configuration dynamic structure 39
configuration file structure . 11
configuration global structure . 38
configuration info (Interactive CLI) 33
configuration of generic peripherals 30
configuration parameter setting (Interactive CLI)

. 33
configuring branch prediction . 21
configuring data & instruction caches 19
configuring data & instruction MMUs 18
configuring DMA . 24
configuring memory . 16
configuring Or1ksim . 11
configuring power management 20
configuring the ATA/ATAPI interfaces 29
configuring the behavior of Or1ksim 12
configuring the CPU . 15
configuring the Custom Unit Compiler (CUC) 14
configuring the debug unit and interface to external

debuggers . 21
configuring the Ethernet interface 25
configuring the frame buffer . 27
configuring the GPIO . 26
configuring the interrupt controller 20
configuring the keyboard interface 28
configuring the memory controller 22
configuring the processor . 15
configuring the PS2 interface . 28
configuring the UART . 23
configuring the Verification API (VAPI) 14
configuring the VGA interface . 27
copying memory (Interactive CLI) 32
CPU configuration . 15
CUC configuration . 14
Custom Unit Compiler (Interactive CLI) 33, 34
Custom Unit Compiler Configuration 14

D
data cache configuration . 19
data MMU configuration . 18
DCGE (power management register) 21
debug (Interactive CLI) . 33
debug (simulator configuration) 12
debug channel toggle (Interactive CLI) 33
debug interface configuration . 21
debug mode toggle (Interactive CLI) 33
debug unit configuration . 21
Debug Unit verification (VAPI) 35
debugging enabled (Argtable2) . 3
DejaGnu board configurations . 40
DejaGnu configuration . 40
DejaGNU tests directories . 40
DejaGnu tool specific configuration 40
delayr (memory configuration) 18
delayw (memory configuration) 18
dependstats (CPU configuration) 16

dev_id (ATA/ATAPI configuration) 29
disassemble (Interactive CLI) . 32
disc interface configuration . 29
disc interface device configuration 30
display interface configuration . 27
displaying memory (Interactive CLI) 32
displaying registers (Interactive CLI) 32
dm (Interactive CLI) . 32
dma (Ethernet configuration) . 25
DMA configuration . 24
DMA verification (VAPI) . 35
dma_mode0_td (ATA/ATAPI configuration) 30
dma_mode0_teoc (ATA/ATAPI configuration) 30
dma_mode0_tm (ATA/ATAPI configuration) 30
DME (power management register) 20
DMMU configuration . 18
doze mode (power management register) 20
dv (Interactive CLI) . 33
dynamic clock gating (power management register)

. 21
dynamic model . 2
dynamic ports, use of . 14

E
edge_trigger (interrupt controller) 20
enable_bursts (CUC configuration) 15
enabled (ATA/ATAPI configuration) 29
enabled (branch prediction configuration) 21
enabled (cache configuration) . 19
enabled (debug interface configuration) 21
enabled (DMA configuration) . 25
enabled (Ethernet configuration) 25
enabled (frame buffer configuration) 27
enabled (generic peripheral configuration) 31
enabled (GPIO configuration) . 26
enabled (interrupt controller) . 20
enabled (keyboard configuration) 28
enabled (memory controller configuration) 22
enabled (MMU configuration) . 18
enabled (power management configuration) 21
enabled (UART configuration) 23
enabled (verification API configuration) 14
enabled (VGA configuration) . 27
enabling Ethernet via socket . 2
entrysize (MMU configuration) 19
ETH_VAPI_CTRL (Ethernet verification) 36
ETH_VAPI_DATA (Ethernet verification) 36
Ethernet configuration . 25
Ethernet verification (VAPI) . 35
Ethernet via socket, enabling . 2
exclusive-OR immediate operand 3
exe_bin_insn_log (simulator configuration) 13
exe_bin_insn_log_file (simulator configuration)

. 13
exe_log (simulator configuration) 13
exe_log_end (simulator configuration) 13
exe_log_file (simulator configuration) 13
exe_log_fn (simulator configuration - deprecated)

. 13
exe_log_marker (simulator configuration) 13
exe_log_start (simulator configuration) 13
exe_log_type (simulator configuration) 13

Index 50

exe_log_type=default (simulator configuration)
. 13

exe_log_type=hardware (simulator configuration)
. 13

exe_log_type=simple (simulator configuration) . . 13
exe_log_type=software (simulator configuration)

. 13
executing code (Interactive CLI) 32
execution history (Interactive CLI) 32

F
file (ATA/ATAPI device configuration) 30
file (keyboard configuration) . 28
filename (frame buffer configuration - deprecated)

. 28
filename (VGA configuration - deprecated) 27
firmware (ATA/ATAPI device configuration) 30
flag setting by instructions . 3
frame buffer configuration . 27

G
generic peripheral configuration 30
GPIO configuration . 26
GPIO verification (VAPI) . 36
GPIO_VAPI_AUX (GPIO verification) 36
GPIO_VAPI_CLOCK (GPIO verification) 36
GPIO_VAPI_CTRL (GPIO verification) 36
GPIO_VAPI_DATA (GPIO verification) 36
GPIO_VAPI_INTE (GPIO verification) 36
GPIO_VAPI_PTRIG (GPIO verification) 36
GPIO_VAPI_RGPIO (GPIO verification) 36

H
hardfloat (CPU configuration) 16
hazards (CPU configuration) . 16
heads (ATA/ATAPI device configuration) 30
help (Interactive CLI) . 34
hexadecimal memory dump (Interactive CLI) 33
hide_device_id (verification API configuration) . . 14
hist (Interactive CLI) . 32
history (simulator configuration) 12
history of execution (Interactive CLI) 32
hitdelay (branch prediction configuration) 21
hitdelay (instruction cache configuration) 20
hitdelay (MMU configuration) 19
host test code . 40
hw_enabled (generic peripheral configuration) 31

I
IMMU configuration . 18
index (memory controller configuration) 23
info (Interactive CLI) . 33
installing Or1ksim . 2
instruction cache configuration 19
instruction MMU configuration 18
instruction profiling for Or1ksim 6
instruction profiling utility (Interactive CLI) 34
internal debugging . 39
interrupt controller configuration 20
irq (ATA/ATAPI configuration) 29

irq (DMA configuration) . 25
irq (GPIO configuration) . 26
irq (keyboard configuration) . 28
irq (UART configuration) . 24
irq (VGA configuration) . 27

J
jitter (UART configuration) . 24

K
keyboard configuration . 28

L
library version of Or1ksim . 7
license for Or1ksim . 41
list breakpoints (Interactive CLI) 32
load_hitdelay (data cache configuration) 20
load_missdelay (data cache configuration) 20
log (memory configuration) . 18
log_enabled (verification API configuration) 14
long . 8

M
make file for tests . 40
mc (memory configuration) . 18
memory configuration . 16
memory controller configuration 22
memory copying (Interactive CLI) 32
memory display (Interactive CLI) 32
memory dump, hexadecimal (Interactive CLI) 33
memory dump, Verilog (Interactive CLI) 33
memory patching (Interactive CLI) 32
memory profiling end address . 7
memory profiling start address . 7
memory profiling utility (Interactive CLI) 34
memory profiling version of Or1ksim 7
memory_order (CUC configuration) 14
memory_order=exact (CUC configuration) 14
memory_order=none (CUC configuration) 14
memory_order=strong (CUC configuration) 14
memory_order=weak (CUC configuration) 14
missdelay (branch prediction configuration) 21
missdelay (instruction cache configuration) 20
missdelay (MMU configuration) 19
MMU configuration . 18
mprof_file (simulator configuration) 12
mprof_fn (simulator configuration - deprecated) . . 12
mprofile (Interactive CLI) . 34
mprofile (simulator configuration) 12
mwdma (ATA/ATAPI device configuration) 30

N
name (generic peripheral configuration) 31
name (memory configuration) . 18
no_multicycle (CUC configuration) 15
nsets (cache configuration) . 19
nsets (MMU configuration) . 19
nways (cache configuration) . 19

Index 51

nways (MMU configuration) . 19

O
or1ksim_get_time_period . 8
or1ksim_init . 7
or1ksim_interrupt . 9
or1ksim_interrupt_clear . 9
or1ksim_interrupt_set . 9
or1ksim_is_le . 8
or1ksim_jtag_reset . 9
or1ksim_jtag_shift_dr . 9
or1ksim_jtag_shift_ir . 9
or1ksim_read_mem . 9
or1ksim_read_reg . 10
or1ksim_read_spr . 10
or1ksim_reset_duration . 8
or1ksim_run . 8
or1ksim_set_stall_state . 10
or1ksim_set_time_point . 8
or1ksim_write_mem . 9
or1ksim_write_reg . 10
or1ksim_write_spr . 10
output rediretion . 39
overflow flag setting by instructions 4

P
packet (ATA/ATAPI device configuration) 30
pagesize (MMU configuration) 19
patching memory (Interactive CLI) 32
patching registers (Interactive CLI) 32
patching the program counter (Interactive CLI) . . . 32
pattern (memory configuration) 17
pc (Interactive CLI) . 32
PIC configuration . 20
pio (ATA/ATAPI device configuration) 30
pio_mode0_t1 (ATA/ATAPI configuration) 29
pio_mode0_t2 (ATA/ATAPI configuration) 29
pio_mode0_t4 (ATA/ATAPI configuration) 29
pio_mode0_teoc (ATA/ATAPI configuration) 29
pm (Interactive CLI) . 32
PMR - DGCE . 21
PMR - DME . 20
PMR - SDF . 20
PMR - SME . 20
PMR - SUME . 21
PMU configuration . 20
poc (memory controller configuration) 23
port range for TCP/IP . 14
power management configuration 20
power management register, DGCE 21
power management register, DME 20
power management register, SDF 20
power management register, SME 20
power management register, SUME 21
pr (Interactive CLI) . 32
private ports, use of . 14
processor configuration . 15
processor stall (Interactive CLI) 32
processor unstall (Interactive CLI) 32
prof_file (simulator configuration) 12
prof_fn (simulator configuration - deprecated) . . . 12
profile (simulator configuration) 12

profiling for Or1ksim . 6
profiling utility (Interactive CLI) 34
program counter patching (Interactive CLI) 32
programmable interrupt controller configuration . . 20
PS2 configuration . 28

Q
q (Interactive CLI) . 32
quitting (Interactive CLI) . 32

R
r (Interactive CLI) . 32
random_seed (memory configuration) 17
refresh_rate (frame buffer configuration) 28
refresh_rate (VGA configuration) 27
reg_sim_reset . 39
register display (Interactive CLI) 32
register over time statistics . 3
register patching (Interactive CLI) 32
regression testing . 39
Remote Serial Protocol . 21
Remote Serial Protocol, --nosrv 5
Remote Serial Protocol, --srv . 5
reset (Interactive CLI) . 32
reset hooks . 39
reset the simulator (Interactive CLI) 32
rev (ATA/ATAPI configuration) 29
rev (CPU configuration) . 15
rsp_enabled (debug interface configuration) 21
rsp_port (debug interface configuration) 22
rtx_type (Ethernet configuration) 25
run (Interactive CLI) . 32
running code (Interactive CLI) 32
running Or1ksim . 5
runtime . 39
runtime global structure . 39
runtime.cpu . 39
runtime.cpu.fout . 39
runtime.cuc . 39
runtime.vapi . 39
rx_channel (Ethernet configuration) 26
rxfile (Ethernet configuration) 26

S
sbp_bf_fwd (branch prediction configuration) 21
sbp_bnf_fwd (branch prediction configuration) . . . 21
sbuf_len (CPU configuration) 16
SDF (power management register) 20
section ata . 29
section bpb . 21
section cpio . 26
section cpu . 15
section cuc . 14
section dc . 19
section debug . 21
section dma . 24
section dmmu . 18
section ethernet . 25
section fb . 27
section generic . 30
section ic . 19

Index 52

section immu . 18
section kb . 28
section mc . 22
section memory . 16
section pic . 20
section pmu . 20
section sim . 12
section uart . 23
section vapi . 14
section vga . 27
sections . 39
sectors (ATA/ATAPI device configuration) 30
server_port (verification API configuration) 14
set (Interactive CLI) . 33
set breakpoint (Interactive CLI) 32
setdbch (Interactive CLI) . 33
simple model . 2
simulator configuration . 12
simulator configuration info (Interactive CLI) 33
simulator reset (Interactive CLI) 32
simulator statistics (Interactive CLI) 33
size (ATA/ATAPI device configuration) 30
size (generic peripheral configuration) 31
size (memory configuration) . 17
sleep mode (power management register) 20
slow down factor (power management register) . . . 20
SME (power management register) 20
sockif (Ethernet configuration) 26
sr (CPU configuration) . 16
stall (Interactive CLI) . 32
stall the processor (Interactive CLI) 32
statistics, register over time . 3
statistics, simulation (Interactive CLI) 33
stats (Interactive CLI) . 33
stepping code (Interactive CLI) 32
store_hitdelay (data cache configuration) 20
store_missdelay (data cache configuration) 20
SUME (power management register) 21
superscalar (CPU configuration) 16
suspend mode (power management register) 21

T
t (Interactive CLI) . 32
target test code . 40
TCP/IP port range . 14
TCP/IP port range for or1ksim-rsp service 22
test code for host . 40
test code for target . 40
test make file . 40
test README . 40
testing . 39
tests, all enabled. 3
timings_file (CUC configuration) 15

timings_fn (CUC configuration - deprecated) 15
toggle breakpoint (Interactive CLI) 32
toggle debug channels (Interactive CLI) 33
toggle debug mode (Interactive CLI) 33
tx_channel (Ethernet configuration) 26
txfile (Ethernet configuration) 26
txfile (frame buffer configuration) 28
txfile (VGA configuration) . 27
type (ATA/ATAPI device configuration) 30
type (memory configuration) . 17
type=pattern (memory configuration) 17
type=random (memory configuration) 17
type=unknown (memory configuration) 17
type=zero (memory configuration) 17

U
UART configuration . 23
UART I/O from/to a physical serial port 24
UART I/O from/to an xterm . 24
UART I/O from/to files . 23
UART I/O from/to open file descriptors 24
UART I/O from/to TCP/IP . 24
UART verification (VAPI). 35
unstall (Interactive CLI) . 32
unstall the processor (Interactive CLI) 32
upr (CPU configuration) . 15
ustates (cache configuration) . 20
ustates (MMU configuration) . 19

V
VAPI configuration . 14
VAPI for Debug Unit . 35
VAPI for DMA . 35
VAPI for Ethernet . 35
VAPI for GPIO . 36
VAPI for UART . 35
vapi_id (debug interface configuration) 22
vapi_id (DMA configuration) 25, 26
vapi_id (GPIO configuration) . 27
vapi_id (UART configuration) 24
vapi_log_file (verification API configuration) . . . 14
vapi_log_fn (verification API configuration -

deprecated) . 14
ver (CPU configuration) . 15
verbose (simulator configuration) 12
Verification API configuration . 14
Verilog memory dump (Interactive CLI) 33
VGA configuration . 27

W
word_enabled (generic peripheral configuration) . . 31

	Scope of this Document
	Installation
	Preparation
	Configuring the Build
	Building and Installing
	Known Problems and Issues

	Usage
	Standalone Simulator
	Profiling Utility
	Memory Profiling Utility
	Simulator Library

	Configuration
	Configuration File Format
	Configuration File Preprocessing
	Configuration File Syntax

	Simulator Configuration
	Simulator Behavior
	Verification API (VAPI) Configuration
	Custom Unit Compiler (CUC) Configuration

	Configuring the OpenRISC Architectural Components
	CPU Configuration
	Memory Configuration
	Memory Management Configuration
	Cache Configuration
	Interrupt Configuration
	Power Management Configuration
	Branch Prediction Configuration
	Debug Interface Configuration

	Configuring Memory Mapped Peripherals
	Memory Controller Configuration
	UART Configuration
	DMA Configuration
	Ethernet Configuration
	GPIO Configuration
	Display Interface Configuration
	Frame Buffer Configuration
	Keyboard Configuration (PS2)
	Disc Interface Configuration
	ATA/ATAPI Device Configuration

	Generic Peripheral Configuration

	Interactive Command Line
	Verification API (VAPI)
	A Guide to Or1ksim Internals
	Coding Conventions for Or1ksim
	Global Data Structures
	Concepts
	Internal Debugging
	Regression Testing

	GNU Free Documentation License
	Index

